Research Article
BibTex RIS Cite

A NEW CRITERION FOR STABILITY OF NEUTRAL-TYPE HOPFIELD NEURAL NETWORKS WITH CONSTANT DELAYS

Year 2020, Volume: 25 Issue: 2, 639 - 650, 31.08.2020
https://doi.org/10.17482/uumfd.716884

Abstract

This paper makes some contributions to the stability problem of neutral-type Hopfield neural network model having a constant time delay in states of neurons and a constant neutral delay in the time derivatives of states of neurons. With the help of a suitable Lyapunov functional, a novel stability criterion is derived for neutral-type Hopfield neural network model. This stability criterion only requires to check the positive defineteness of the matrices involving the system elements of this type of neural networks. The presented stability condition proved to be independently of these time and neutral delays. Therefore, this condition can be easily justified by applying the properties of some certain matrices. A numerical example for this type of neutral systems is studied to show the applicability of the presented stability result. 

References

  • 1. Akca, H., Covachev, V. ve Covacheva, Z. (2015) Global Asymptotic Stability of Cohen-Grossberg Neural Networks of Neutral Type, Journal of Mathematical Sciences, 205(6), 719-732. 10.1007/s10958-015-2278-8.
  • 2. Arik, S. (2014a) New Criteria for Global Robust Stability of Delayed Neural Networks With Norm-Bounded Uncertainties, IEEE Transactions on Neural Networks and Learning Systems, 25(6), 1045-1052. 10.1109/TNNLS.2013.2287279.
  • 3. Arik, S. (2014b) An Analysis of Stability of Neutral-Type Neural Systems with Constant Time Delays, Journal of the Franklin Institute, 351(11), 4949-4959. 10.1016/j.jfranklin.2014.08.013.
  • 4. Chen, H., Zhang, Y. ve Hu, P. (2010) Novel Delay-Dependent Robust Stability Criteria for Neutral Stochastic Delayed Neural Networks, Neurocomputing, 73(13-15), 2554-25561. 10.1016/j.neucom.2010.06.003.
  • 5. Cheng, C. J., Liao, T. L., Yan, J. J. ve Hwang, C. C. (2008) Globally Asymptotic Stability of a Class of Neutral-Type Neural Networks With Delays, IEEE Transactions on Systems, Man, and Cybernetics-PART B: Cybernetics, 36(5), 1191-1195. 10.1109/TSMCB.2006.874677.
  • 6. Dharani, S., Rakkiyappan R. ve Cao, J. (2015) New Delay-Dependent Stability Criteria for Switched Hopfield Neural Networks of Neutral Type with Additive Time-Darying Delay Components, Neurocomputing, 151(2) 827-834. 10.1016/j.neucom.2014.10.014.
  • 7. Ge, C., Hua, C. ve Guan, X. (2014) New Delay-Dependent Stability Criteria for Neural Networks With Time-Varying Delay Using Delay-Decomposition Approach, IEEE Transactions on Neural Networks and Learning Systems, 25(7), 1378-1383. 10.1109/TNNLS.2013.2285564.
  • 8. Hopfield, J. (1982) Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proceedings of National Academy of Science, 79, 2554-2558.
  • 9. Jian, J. ve Duan, L. (2020) Finite-Time Synchronization for Fuzzy Neutral-Type Inertial Neural Networks with Time-Varying Coefficients and Proportional Delays, Fuzzy Sets and Systems, 381, 51-67. 10.1016/j.fss.2019.04.004.
  • 10. Kolmanovskii, V. B. ve Nosov, V. R. (1986) Stability of Functional Differential Equations, Academic Press, London.
  • 11. Kuang, Y. (1993) Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston.
  • 12. Lakshmanan, S., Park, J. H., Jung, H. Y., Kwon, O. M. ve Rakkiyappan, R. (2013) A Delay Partitioning Approach to Delay-Dependent Stability Analysis for Neutral Type Neural Networks with Discrete and Distributed Delays, Neurocomputing, 111, 81-89. 10.1016/j.neucom.2012.12.016.
  • 13. Liao, X., Liu, Y., Wang, H. ve Huang, T. (2015) Exponential Estimates and Exponential Stability for Neutral-Type Neural Networks with Multiple Delays, Neurocomputing, 149(3), 868-883. 10.1016/j.neucom.2014.07.048.
  • 14. Lien, C. H., Yu, K. W. , Lin, Y. F., Chung, Y. J. ve Chung, L. Y. (2008) Global Exponential Stability for Uncertain Delayed Neural Networks of Neutral Type With Mixed Time Delays, IEEE Transactions on Systems, Man, and Cybernetics-PART B: Cybernetics, 38(3), 709-720. 10.1109/TSMCB.2008.918564.
  • 15. Manivannan, R., Samidurai, R., Cao, J., Alsaedi, A. ve E.Alsaadi, F. (2017) Global Exponential Stability and Dissipativity of Generalized Neural Networks with Time-Varying Delay Signals, Neural Networks, 87, 149-159. 10.1016/j.neunet.2016.12.005.
  • 16. Manivannan, R., Panda, S., Chong, K. T. ve Cao, J. (2018) An Arcak-Type State Estimation Design for Time-Delayed Static Neural Networks with Leakage Term Based on Unified Criteria, Neural Networks, 106, 110-126. 10.1016/j.neunet.2018.06.015.
  • 17. Muralisankar, S., Manivannan, A. ve Balasubramaniam, P. (2015) Mean Square Delay Dependent-Probability-Distribution Stability Analysis of Neutral Type Stochastic Neural Networks, ISA Transactions, 58, 11-19. 10.1016/j.isatra.2015.03.004.
  • 18. Niculescu, S. I. (2001) Delay Effects on Stability: A Robust Control Approach, Springer, Berlin.
  • 19. Orman, Z. (2012) New Sufficient Conditions for Global Stability of Neutral-Type Neural Networks with Time Delays, Neurocomputing, 97, 141-148. 10.1016/j.neucom.2012.05.016.
  • 20. Ozcan, N. (2018) New Conditions for Global Stability of Neutral-Type Delayed Cohen-Grossberg Neural Networks, Neural Networks, 106, 1-7. 10.1016/j.neunet.2018.06.009.
  • 21. Ozcan, N. (2019) Stability Analysis of Cohen–Grossberg Neural Networks of Neutral-Type: Multiple Delays Case, Neural Networks, 113, 20-27. 10.1016/j.neunet.2019.01.017.
  • 22. Samli, R. ve Arik, S. (2009) New Results for Global Stability of a Class of Neutral-Type Neural Systems with Time Delays, Applied Mathematics and Computation, 210(2), 564-570. 10.1016/j.amc.2009.01.031.
  • 23. Shi, K., Zhong, S., Zhu, H., Liu, X. ve Zeng, Y. (2015) New Delay-Dependent Stability Criteria for Neutral-Type Neural Networks with Mixed Random Time-Varying Delays, Neurocomputing, 168, 896-907. 10.1016/j.neucom.2015.05.035.
  • 24. Shi, K., Zhu, H., Zhong, S., Zeng, Y. ve Zhang, Y. (2015) New Stability Analysis for Neutral Type Neural Networks with Discrete and Distributed Delays Using a Multiple Integral Approach, Journal of the Franklin Institute, 352(1), 155-176. 10.1016/j.jfranklin.2014.10.005.
  • 25. Shu, J., Xiong, L., Wu, T. ve Liu, Z. (2019) Stability Analysis of Quaternion-Valued Neutral-Type Neural Networks with Time-Varying Delay, Mathematics, 7, 1-23. 10.3390/math7010101.
  • 26. Song, Q., Yu,Q., Zhao, Z., Liu, Y. ve Alsaadi, F. E. (2018) Boundedness and Global Robust Stability Analysis of Delayed Complex-Valued Neural Networks with Interval Parameter Uncertainties, Neural Networks, 103, 55-62. 10.1016/j.neunet.2018.03.008.
  • 27. Tu, Z., Cao, J., Alsaedi, A., Alsaadi, F. E. ve Hayat, T. (2016) Global Lagrange Stability of Complex‐Valued Neural Networks of Neutral Type with Time‐Varying Delays, Complexity, 21, 438-450. 10.1002/cplx.21823.
  • 28. Wang, J., Jiang, H., Ma, T. ve Hu, C. (2018) Delay-Dependent Dynamical Analysis of Complex-Valued Memristive Neural Networks: Continuous-Time and Discrete-Time Cases, Neural Networks, 101, 33-46. 10.1016/j.neunet.2018.01.015.
  • 29. Yang, Y., Liang, T. ve Xu, X. (2015) Almost Sure Exponential Stability of Stochastic Cohen-Grossberg Neural Networks with Continuous Distributed Delays of Neutral Type, Optik – International Journal for Light and Electron Optics, 126(23), 4628-4635. 10.1016/j.ijleo.2015.08.099.
  • 30. Zhang, C. K., He, Y., Jiang, L., Lin, W. J. ve Wu, M. (2017) Delay-Dependent Stability Analysis of Neural Networks with Time-Varying Delay: A Generalized Free-Weighting-Matrix Approach, Applied Mathematics and Computation, 294, 102-120. 10.1016/j.amc.2016.08.043.
  • 31. Zhang, G., Wang, T., Li, T. ve Fei, S. (2018) Multiple Integral Lyapunov Approach to Mixed-Delay-Dependent Stability of Neutral Neural Networks, Neurocomputing, 275, 1782-1792. 10.1016/j.neucom.2017.10.021.
  • 32. Zhu, Q. ve Cao, J. (2010) Robust Exponential Stability of Markovian Jump Impulsive Stochastic Cohen-Grossberg Neural Networks with Mixed Time Delays, IEEE Transactions on Neural Networks, 21(8), 1314-1325. 10.1109/TNN.2010.2054108.

Sabit Gecikmeler İçeren Nötral-Tip Hopfield Yapay Sinir Ağlarının Kararlılığı için Yeni Bir Kriter

Year 2020, Volume: 25 Issue: 2, 639 - 650, 31.08.2020
https://doi.org/10.17482/uumfd.716884

Abstract

Bu makale, hem nöron durumlarının hem de nöron durumlarının türevlerinde sabit gecikmeler içeren nötral-tip Hopfield yapay sinir ağı modelinin kararlılık problemine yeni katkılar yapmaktadır. Uygun bir Lyapunov fonksiyoneli yardımıyla, nötral-tip Hopfield yapay sinir ağlarının kararlılığını sağlayan yeni bir kriter sunulmaktadır. Bu kararlılık kriterinin en önemli avantajı sadece sistem elemanlarından oluşan özel bir matrisin pozitif tanımlı olmasını test edilmesine dayandırılmış olmasıdır. Ayrıca, elde edilen kararlılık koşulu zaman ve nötral gecikmelerden bağımsızdır. Bu nedenle, elde edilen kararlılık kriterinin geçerliliği bazı özel matris özellikleri yardımıyla kolayca test edilebilir. Diğer yandan, önerilen kararlılık koşulunun uygulanabilirliğini göstermek amacıyla sayısal bir örnek verilmiştir.

References

  • 1. Akca, H., Covachev, V. ve Covacheva, Z. (2015) Global Asymptotic Stability of Cohen-Grossberg Neural Networks of Neutral Type, Journal of Mathematical Sciences, 205(6), 719-732. 10.1007/s10958-015-2278-8.
  • 2. Arik, S. (2014a) New Criteria for Global Robust Stability of Delayed Neural Networks With Norm-Bounded Uncertainties, IEEE Transactions on Neural Networks and Learning Systems, 25(6), 1045-1052. 10.1109/TNNLS.2013.2287279.
  • 3. Arik, S. (2014b) An Analysis of Stability of Neutral-Type Neural Systems with Constant Time Delays, Journal of the Franklin Institute, 351(11), 4949-4959. 10.1016/j.jfranklin.2014.08.013.
  • 4. Chen, H., Zhang, Y. ve Hu, P. (2010) Novel Delay-Dependent Robust Stability Criteria for Neutral Stochastic Delayed Neural Networks, Neurocomputing, 73(13-15), 2554-25561. 10.1016/j.neucom.2010.06.003.
  • 5. Cheng, C. J., Liao, T. L., Yan, J. J. ve Hwang, C. C. (2008) Globally Asymptotic Stability of a Class of Neutral-Type Neural Networks With Delays, IEEE Transactions on Systems, Man, and Cybernetics-PART B: Cybernetics, 36(5), 1191-1195. 10.1109/TSMCB.2006.874677.
  • 6. Dharani, S., Rakkiyappan R. ve Cao, J. (2015) New Delay-Dependent Stability Criteria for Switched Hopfield Neural Networks of Neutral Type with Additive Time-Darying Delay Components, Neurocomputing, 151(2) 827-834. 10.1016/j.neucom.2014.10.014.
  • 7. Ge, C., Hua, C. ve Guan, X. (2014) New Delay-Dependent Stability Criteria for Neural Networks With Time-Varying Delay Using Delay-Decomposition Approach, IEEE Transactions on Neural Networks and Learning Systems, 25(7), 1378-1383. 10.1109/TNNLS.2013.2285564.
  • 8. Hopfield, J. (1982) Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proceedings of National Academy of Science, 79, 2554-2558.
  • 9. Jian, J. ve Duan, L. (2020) Finite-Time Synchronization for Fuzzy Neutral-Type Inertial Neural Networks with Time-Varying Coefficients and Proportional Delays, Fuzzy Sets and Systems, 381, 51-67. 10.1016/j.fss.2019.04.004.
  • 10. Kolmanovskii, V. B. ve Nosov, V. R. (1986) Stability of Functional Differential Equations, Academic Press, London.
  • 11. Kuang, Y. (1993) Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston.
  • 12. Lakshmanan, S., Park, J. H., Jung, H. Y., Kwon, O. M. ve Rakkiyappan, R. (2013) A Delay Partitioning Approach to Delay-Dependent Stability Analysis for Neutral Type Neural Networks with Discrete and Distributed Delays, Neurocomputing, 111, 81-89. 10.1016/j.neucom.2012.12.016.
  • 13. Liao, X., Liu, Y., Wang, H. ve Huang, T. (2015) Exponential Estimates and Exponential Stability for Neutral-Type Neural Networks with Multiple Delays, Neurocomputing, 149(3), 868-883. 10.1016/j.neucom.2014.07.048.
  • 14. Lien, C. H., Yu, K. W. , Lin, Y. F., Chung, Y. J. ve Chung, L. Y. (2008) Global Exponential Stability for Uncertain Delayed Neural Networks of Neutral Type With Mixed Time Delays, IEEE Transactions on Systems, Man, and Cybernetics-PART B: Cybernetics, 38(3), 709-720. 10.1109/TSMCB.2008.918564.
  • 15. Manivannan, R., Samidurai, R., Cao, J., Alsaedi, A. ve E.Alsaadi, F. (2017) Global Exponential Stability and Dissipativity of Generalized Neural Networks with Time-Varying Delay Signals, Neural Networks, 87, 149-159. 10.1016/j.neunet.2016.12.005.
  • 16. Manivannan, R., Panda, S., Chong, K. T. ve Cao, J. (2018) An Arcak-Type State Estimation Design for Time-Delayed Static Neural Networks with Leakage Term Based on Unified Criteria, Neural Networks, 106, 110-126. 10.1016/j.neunet.2018.06.015.
  • 17. Muralisankar, S., Manivannan, A. ve Balasubramaniam, P. (2015) Mean Square Delay Dependent-Probability-Distribution Stability Analysis of Neutral Type Stochastic Neural Networks, ISA Transactions, 58, 11-19. 10.1016/j.isatra.2015.03.004.
  • 18. Niculescu, S. I. (2001) Delay Effects on Stability: A Robust Control Approach, Springer, Berlin.
  • 19. Orman, Z. (2012) New Sufficient Conditions for Global Stability of Neutral-Type Neural Networks with Time Delays, Neurocomputing, 97, 141-148. 10.1016/j.neucom.2012.05.016.
  • 20. Ozcan, N. (2018) New Conditions for Global Stability of Neutral-Type Delayed Cohen-Grossberg Neural Networks, Neural Networks, 106, 1-7. 10.1016/j.neunet.2018.06.009.
  • 21. Ozcan, N. (2019) Stability Analysis of Cohen–Grossberg Neural Networks of Neutral-Type: Multiple Delays Case, Neural Networks, 113, 20-27. 10.1016/j.neunet.2019.01.017.
  • 22. Samli, R. ve Arik, S. (2009) New Results for Global Stability of a Class of Neutral-Type Neural Systems with Time Delays, Applied Mathematics and Computation, 210(2), 564-570. 10.1016/j.amc.2009.01.031.
  • 23. Shi, K., Zhong, S., Zhu, H., Liu, X. ve Zeng, Y. (2015) New Delay-Dependent Stability Criteria for Neutral-Type Neural Networks with Mixed Random Time-Varying Delays, Neurocomputing, 168, 896-907. 10.1016/j.neucom.2015.05.035.
  • 24. Shi, K., Zhu, H., Zhong, S., Zeng, Y. ve Zhang, Y. (2015) New Stability Analysis for Neutral Type Neural Networks with Discrete and Distributed Delays Using a Multiple Integral Approach, Journal of the Franklin Institute, 352(1), 155-176. 10.1016/j.jfranklin.2014.10.005.
  • 25. Shu, J., Xiong, L., Wu, T. ve Liu, Z. (2019) Stability Analysis of Quaternion-Valued Neutral-Type Neural Networks with Time-Varying Delay, Mathematics, 7, 1-23. 10.3390/math7010101.
  • 26. Song, Q., Yu,Q., Zhao, Z., Liu, Y. ve Alsaadi, F. E. (2018) Boundedness and Global Robust Stability Analysis of Delayed Complex-Valued Neural Networks with Interval Parameter Uncertainties, Neural Networks, 103, 55-62. 10.1016/j.neunet.2018.03.008.
  • 27. Tu, Z., Cao, J., Alsaedi, A., Alsaadi, F. E. ve Hayat, T. (2016) Global Lagrange Stability of Complex‐Valued Neural Networks of Neutral Type with Time‐Varying Delays, Complexity, 21, 438-450. 10.1002/cplx.21823.
  • 28. Wang, J., Jiang, H., Ma, T. ve Hu, C. (2018) Delay-Dependent Dynamical Analysis of Complex-Valued Memristive Neural Networks: Continuous-Time and Discrete-Time Cases, Neural Networks, 101, 33-46. 10.1016/j.neunet.2018.01.015.
  • 29. Yang, Y., Liang, T. ve Xu, X. (2015) Almost Sure Exponential Stability of Stochastic Cohen-Grossberg Neural Networks with Continuous Distributed Delays of Neutral Type, Optik – International Journal for Light and Electron Optics, 126(23), 4628-4635. 10.1016/j.ijleo.2015.08.099.
  • 30. Zhang, C. K., He, Y., Jiang, L., Lin, W. J. ve Wu, M. (2017) Delay-Dependent Stability Analysis of Neural Networks with Time-Varying Delay: A Generalized Free-Weighting-Matrix Approach, Applied Mathematics and Computation, 294, 102-120. 10.1016/j.amc.2016.08.043.
  • 31. Zhang, G., Wang, T., Li, T. ve Fei, S. (2018) Multiple Integral Lyapunov Approach to Mixed-Delay-Dependent Stability of Neutral Neural Networks, Neurocomputing, 275, 1782-1792. 10.1016/j.neucom.2017.10.021.
  • 32. Zhu, Q. ve Cao, J. (2010) Robust Exponential Stability of Markovian Jump Impulsive Stochastic Cohen-Grossberg Neural Networks with Mixed Time Delays, IEEE Transactions on Neural Networks, 21(8), 1314-1325. 10.1109/TNN.2010.2054108.
There are 32 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Özlem Faydasıçok 0000-0002-7621-4350

Publication Date August 31, 2020
Submission Date April 8, 2020
Acceptance Date May 7, 2020
Published in Issue Year 2020 Volume: 25 Issue: 2

Cite

APA Faydasıçok, Ö. (2020). A NEW CRITERION FOR STABILITY OF NEUTRAL-TYPE HOPFIELD NEURAL NETWORKS WITH CONSTANT DELAYS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(2), 639-650. https://doi.org/10.17482/uumfd.716884
AMA Faydasıçok Ö. A NEW CRITERION FOR STABILITY OF NEUTRAL-TYPE HOPFIELD NEURAL NETWORKS WITH CONSTANT DELAYS. UUJFE. August 2020;25(2):639-650. doi:10.17482/uumfd.716884
Chicago Faydasıçok, Özlem. “A NEW CRITERION FOR STABILITY OF NEUTRAL-TYPE HOPFIELD NEURAL NETWORKS WITH CONSTANT DELAYS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, no. 2 (August 2020): 639-50. https://doi.org/10.17482/uumfd.716884.
EndNote Faydasıçok Ö (August 1, 2020) A NEW CRITERION FOR STABILITY OF NEUTRAL-TYPE HOPFIELD NEURAL NETWORKS WITH CONSTANT DELAYS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 2 639–650.
IEEE Ö. Faydasıçok, “A NEW CRITERION FOR STABILITY OF NEUTRAL-TYPE HOPFIELD NEURAL NETWORKS WITH CONSTANT DELAYS”, UUJFE, vol. 25, no. 2, pp. 639–650, 2020, doi: 10.17482/uumfd.716884.
ISNAD Faydasıçok, Özlem. “A NEW CRITERION FOR STABILITY OF NEUTRAL-TYPE HOPFIELD NEURAL NETWORKS WITH CONSTANT DELAYS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/2 (August 2020), 639-650. https://doi.org/10.17482/uumfd.716884.
JAMA Faydasıçok Ö. A NEW CRITERION FOR STABILITY OF NEUTRAL-TYPE HOPFIELD NEURAL NETWORKS WITH CONSTANT DELAYS. UUJFE. 2020;25:639–650.
MLA Faydasıçok, Özlem. “A NEW CRITERION FOR STABILITY OF NEUTRAL-TYPE HOPFIELD NEURAL NETWORKS WITH CONSTANT DELAYS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 25, no. 2, 2020, pp. 639-50, doi:10.17482/uumfd.716884.
Vancouver Faydasıçok Ö. A NEW CRITERION FOR STABILITY OF NEUTRAL-TYPE HOPFIELD NEURAL NETWORKS WITH CONSTANT DELAYS. UUJFE. 2020;25(2):639-50.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.