Research Article
BibTex RIS Cite

Scaling law of engineering parameters for nickel nanowires

Year 2021, Volume: 26 Issue: 1, 315 - 324, 30.04.2021
https://doi.org/10.17482/uumfd.861078

Abstract

The nickel nanowires which have been the focus of researchers' attention for their physical properties in recent years are the main subject of this study. The mechanical properties of the single crystal nickel nanowires have been investigated with the help of molecular dynamics simulations and scaling law has been developed for engineering parameters (elasticity modulus, yield stress and maximum stress) by using earlier published experimental studies. In addition, the evolution of crystal structure during the deformation of nickel nanowires was examined by common neighbor analysis. The most important goal of this study is to develop a scaling law for multi-scale modeling of the nickel nanowires.

References

  • Abdullaeva, Z. (2017) Nanomaterials in daily life: Compounds, synthesis, processing and commercialization, Springer International Publishing, A.B.D.
  • Daw M.S., Baskes M.I. (1984) Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B., 29, 6443–53. doi:10.1103/PhysRevB.29.6443
  • Diao J., Gall K., Dunn M.L. (2004) Atomistic simulation of the structure and elastic properties of gold nanowires, J. Mech. Phys. Solids, 52, 1935–62. doi:10.1016/j.jmps.2004.03.009
  • Dupont V., Sansoz F. (2009) Molecular dynamics study of crystal plasticity during nanoindentation in Ni nanowires, J. Mater. Res., 24, 948–56. doi:10.1557/jmr.2009.0103
  • Ertürk A. S., Yıldız Y. O. ve Kırca M. (2019) Mechanical Performance ve Morphological Evolution of Heat-Treated Nanoporous Gold: A Molecular Dynamics Study, Physica E: Low-dimensional Systems and Nanostructures, 108, 15-21. doi:10.1016/j.physe.2018.11.028
  • Foiles S.M., Baskes M.I., Daw M.S. (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B., 33, 7983–91. doi:10.1103/PhysRevB.33.7983
  • Kulshrestha K., Thakur B., Verma Y.P., Jindal P. (2017) Development of Small Pressure Sensing Unit using Nano-Materials, Mater. Today Proc., vol. 4, p. 10422–6. doi:10.1016/j.matpr.2017.06.392
  • Molleman B., Hiemstra T. (2018) Size and shape dependency of the surface energy of metallic nanoparticles: Unifying the atomic and thermodynamic approaches, Phys. Chem. Chem. Phys., 20, 20575–87. doi:10.1039/c8cp02346h
  • Park H.S., Gall K., Zimmerman J.A. (2006) Deformation of FCC nanowires by twinning and slip, J. Mech. Phys. Solids, 54, 1862–81. doi:10.1016/j.jmps.2006.03.006
  • Peng C., Zhong Y., Lu Y., Narayanan S., Zhu T., Lou J. (2013) Strain rate dependent mechanical properties in single crystal nickel nanowires, Appl. Phys. Lett., 102, 083102. doi:10.1063/1.4793481
  • Peng C., Ganesan Y., Lu Y., Lou J. (2012) Size dependent mechanical properties of single crystalline nickel nanowires, J. Appl. Phys., 111, 063524. doi:10.1063/1.3698625
  • Pinheiro P.C., Sousa C.T., Araújo J.P., Guiomar A.J., Trindade T. (2013) Functionalization of nickel nanowires with a fluorophore aiming at new probes for multimodal bioanalysis, J. Colloid Interface Sci., 410, 21–6. doi:10.1016/j.jcis.2013.07.065
  • Plimpton S. (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 117, 1–19. doi:10.1006/jcph.1995.1039
  • Su D., Kim H.S., Kim W.S., Wang G. (2012) Mesoporous nickel oxide nanowires: Hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance, Chem - A Eur. J., 18, 8224–9. doi:10.1002/chem.201200086
  • Thompson A.P., Plimpton S.J., Mattson W. (2009) General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, J. Chem. Phys., 131, 154107. doi:10.1063/1.3245303
  • Wang W.D., Yi C.L., Fan K.Q. (2013) Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires, Trans. Nonferrous Met. Soc. China (English Ed), 23, 3353–61. doi:10.1016/S1003-6326(13)62875-7
  • Wang S., Chen K., Wang M., Li H., Chen G., Liu J., et al. (2018) Controllable synthesis of nickel nanowires and its application in high sensitivity, stretchable strain sensor for body motion sensing, J. Mater. Chem. C., 6, 4737–45. doi:10.1039/C7TC05970A
  • Wu H.A. (2006) Molecular dynamics study on mechanics of metal nanowire, Mech. Res. Commun., 33, 9–16. doi:10.1016/j.euromechsol.2005.11.008
  • Yıldız Y. O. ve Kırca M. (2017) Effects of Ultrathin Coating on the Tensile Behavior of Nanoporous Gold, Journal of Applied Physics, 122, 084305. doi:10.1063/1.5000368

NİKEL NANOTELLER İÇİN MÜHENDİSLİK PARAMETRELERİ ÖLÇEKLENDİRME KURALI

Year 2021, Volume: 26 Issue: 1, 315 - 324, 30.04.2021
https://doi.org/10.17482/uumfd.861078

Abstract

Bu çalışmanın ana konusunu, son yıllarda fiziksel özellikleriyle araştırmacıların ilgi odağında olan nikel nanoteller oluşturmaktadır. Tek kristalli nikel nanotellerin mekanik özellikleri moleküler dinamik simülasyonları vasıtasıyla incelenmiş ve literatürdeki deneysel çalışmalardan da faydalanılarak mühendislik parametreleri (elastisite modülü, akma gerilmesi ve maksimum gerilme) için ölçeklendirme kuralı geliştirilmiştir. Ayrıca nikel naotellerin deformasyon esnasındaki kristal yapısının değişimi ortak komşu analizi ile ortaya konmuştur. Bu çalışmanın en önemli hedefi; nikel nanoteller özelinde çok ölçekli modelleme için literatüre ölçeklendirme kuralı kazandırmaktır.

References

  • Abdullaeva, Z. (2017) Nanomaterials in daily life: Compounds, synthesis, processing and commercialization, Springer International Publishing, A.B.D.
  • Daw M.S., Baskes M.I. (1984) Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B., 29, 6443–53. doi:10.1103/PhysRevB.29.6443
  • Diao J., Gall K., Dunn M.L. (2004) Atomistic simulation of the structure and elastic properties of gold nanowires, J. Mech. Phys. Solids, 52, 1935–62. doi:10.1016/j.jmps.2004.03.009
  • Dupont V., Sansoz F. (2009) Molecular dynamics study of crystal plasticity during nanoindentation in Ni nanowires, J. Mater. Res., 24, 948–56. doi:10.1557/jmr.2009.0103
  • Ertürk A. S., Yıldız Y. O. ve Kırca M. (2019) Mechanical Performance ve Morphological Evolution of Heat-Treated Nanoporous Gold: A Molecular Dynamics Study, Physica E: Low-dimensional Systems and Nanostructures, 108, 15-21. doi:10.1016/j.physe.2018.11.028
  • Foiles S.M., Baskes M.I., Daw M.S. (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B., 33, 7983–91. doi:10.1103/PhysRevB.33.7983
  • Kulshrestha K., Thakur B., Verma Y.P., Jindal P. (2017) Development of Small Pressure Sensing Unit using Nano-Materials, Mater. Today Proc., vol. 4, p. 10422–6. doi:10.1016/j.matpr.2017.06.392
  • Molleman B., Hiemstra T. (2018) Size and shape dependency of the surface energy of metallic nanoparticles: Unifying the atomic and thermodynamic approaches, Phys. Chem. Chem. Phys., 20, 20575–87. doi:10.1039/c8cp02346h
  • Park H.S., Gall K., Zimmerman J.A. (2006) Deformation of FCC nanowires by twinning and slip, J. Mech. Phys. Solids, 54, 1862–81. doi:10.1016/j.jmps.2006.03.006
  • Peng C., Zhong Y., Lu Y., Narayanan S., Zhu T., Lou J. (2013) Strain rate dependent mechanical properties in single crystal nickel nanowires, Appl. Phys. Lett., 102, 083102. doi:10.1063/1.4793481
  • Peng C., Ganesan Y., Lu Y., Lou J. (2012) Size dependent mechanical properties of single crystalline nickel nanowires, J. Appl. Phys., 111, 063524. doi:10.1063/1.3698625
  • Pinheiro P.C., Sousa C.T., Araújo J.P., Guiomar A.J., Trindade T. (2013) Functionalization of nickel nanowires with a fluorophore aiming at new probes for multimodal bioanalysis, J. Colloid Interface Sci., 410, 21–6. doi:10.1016/j.jcis.2013.07.065
  • Plimpton S. (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 117, 1–19. doi:10.1006/jcph.1995.1039
  • Su D., Kim H.S., Kim W.S., Wang G. (2012) Mesoporous nickel oxide nanowires: Hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance, Chem - A Eur. J., 18, 8224–9. doi:10.1002/chem.201200086
  • Thompson A.P., Plimpton S.J., Mattson W. (2009) General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, J. Chem. Phys., 131, 154107. doi:10.1063/1.3245303
  • Wang W.D., Yi C.L., Fan K.Q. (2013) Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires, Trans. Nonferrous Met. Soc. China (English Ed), 23, 3353–61. doi:10.1016/S1003-6326(13)62875-7
  • Wang S., Chen K., Wang M., Li H., Chen G., Liu J., et al. (2018) Controllable synthesis of nickel nanowires and its application in high sensitivity, stretchable strain sensor for body motion sensing, J. Mater. Chem. C., 6, 4737–45. doi:10.1039/C7TC05970A
  • Wu H.A. (2006) Molecular dynamics study on mechanics of metal nanowire, Mech. Res. Commun., 33, 9–16. doi:10.1016/j.euromechsol.2005.11.008
  • Yıldız Y. O. ve Kırca M. (2017) Effects of Ultrathin Coating on the Tensile Behavior of Nanoporous Gold, Journal of Applied Physics, 122, 084305. doi:10.1063/1.5000368
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Nanotechnology
Journal Section Research Articles
Authors

Yunus Onur Yıldız 0000-0001-5693-6682

Publication Date April 30, 2021
Submission Date January 14, 2021
Acceptance Date April 1, 2021
Published in Issue Year 2021 Volume: 26 Issue: 1

Cite

APA Yıldız, Y. O. (2021). NİKEL NANOTELLER İÇİN MÜHENDİSLİK PARAMETRELERİ ÖLÇEKLENDİRME KURALI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(1), 315-324. https://doi.org/10.17482/uumfd.861078
AMA Yıldız YO. NİKEL NANOTELLER İÇİN MÜHENDİSLİK PARAMETRELERİ ÖLÇEKLENDİRME KURALI. UUJFE. April 2021;26(1):315-324. doi:10.17482/uumfd.861078
Chicago Yıldız, Yunus Onur. “NİKEL NANOTELLER İÇİN MÜHENDİSLİK PARAMETRELERİ ÖLÇEKLENDİRME KURALI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, no. 1 (April 2021): 315-24. https://doi.org/10.17482/uumfd.861078.
EndNote Yıldız YO (April 1, 2021) NİKEL NANOTELLER İÇİN MÜHENDİSLİK PARAMETRELERİ ÖLÇEKLENDİRME KURALI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 1 315–324.
IEEE Y. O. Yıldız, “NİKEL NANOTELLER İÇİN MÜHENDİSLİK PARAMETRELERİ ÖLÇEKLENDİRME KURALI”, UUJFE, vol. 26, no. 1, pp. 315–324, 2021, doi: 10.17482/uumfd.861078.
ISNAD Yıldız, Yunus Onur. “NİKEL NANOTELLER İÇİN MÜHENDİSLİK PARAMETRELERİ ÖLÇEKLENDİRME KURALI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/1 (April 2021), 315-324. https://doi.org/10.17482/uumfd.861078.
JAMA Yıldız YO. NİKEL NANOTELLER İÇİN MÜHENDİSLİK PARAMETRELERİ ÖLÇEKLENDİRME KURALI. UUJFE. 2021;26:315–324.
MLA Yıldız, Yunus Onur. “NİKEL NANOTELLER İÇİN MÜHENDİSLİK PARAMETRELERİ ÖLÇEKLENDİRME KURALI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 26, no. 1, 2021, pp. 315-24, doi:10.17482/uumfd.861078.
Vancouver Yıldız YO. NİKEL NANOTELLER İÇİN MÜHENDİSLİK PARAMETRELERİ ÖLÇEKLENDİRME KURALI. UUJFE. 2021;26(1):315-24.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.