Research Article
BibTex RIS Cite

POLİMER ELEKTROLİT MEMBRANLI (PEM) YAKIT PİLLERİ İÇİN İNDİRGENMİŞ GRAFEN OKSİT - KARBON NANOFİBER HİBRİT DESTEKLİ PLATİN ELEKTROKATALİZÖRLERİNİN GELİŞTİRİLMESİ

Year 2021, Volume: 26 Issue: 2, 365 - 378, 31.08.2021
https://doi.org/10.17482/uumfd.790349

Abstract

Polimer elektrolit membranlı (PEM) yakıt pillerinde elektrot yapısında kullanılan elektrokatalizörün verimliliğinin artırılması, maliyetinin düşürülmesi ve ticarileşmesi açısından oldukça önemlidir. Son
yıllarda, ticari olarak kullanılan karbon siyahı destekli platin (Pt/C) elektrokatalizörün aktivite ve performans gibi dezavantajlarından dolayı yeni nesil elektrokatalizörlerin kullanımı oldukça dikkat
çekmektedir. Bu sebeple, bu çalışmada indirgenmiş grafen oksit (rGO) ve karbon nanofiber (KNF) esaslı hibrit karbon yapısı katalizör destek malzemesi olarak kullanılmıştır ve bu destekler üzerine Pt nanoparçacıkları sentezlenmiştir. KNF ve rGO/KNF destekli Pt elektrokatalizörlerin (Pt/KNF ve Pt/rGOKNF) sentezi için basit, çevre dostu ve düşük maliyetli bir teknik olan mikrodalga destekli (MW) sentez tekniği kullanılmıştır. Mikrodalga tekniği ile sentez sayesinde tek basamakta, hızlı ve verimli bir sentez geliştirilmiştir. Sentezlenen elektrokatalizörün fiziksel karakterizasyonu için X-ışını difraktometresi (XRD), RAMAN spektroskopisi ve geçirimli elektron mikroskopisi (TEM) teknikleri kullanılmıştır. Elektrokimyasal aktivite analizi için döngüsel voltametri (CV) ve doğrusal taramalı voltametri (LSV) tekniği kullanılmıştır. Bunun dışında, yakıt pili içinde performans testleri gerçekleştirilmiştir. Pt/rGOKNF Pt/KNF ile kıyaslandığında daha yüksek katalitik aktivite ve yakıt pili performansı (maksimum güç yoğunluğu: 447 mW.cm-2) göstermiştir. Elde edilen sonuçlar, Pt/rGO-KNF hibrit katalizörlerin oldukça umut vaat eden PEM yakıt pili elektrot malzemeleri olduğunu göstermektedir.

References

  • Acres, G.J.K. (2001) Recent advances in fuel cell technology and its applications, Journal of Power Sources, 100, 60–66. doi: 10.1016/S0378-7753(01)00883-7
  • Álvarez, G., Alcaide, F., Cabot, P.L., Lázaro, M.J., Pastor, E., Solla‐Gullón, J. (2012) Electrochemical performance of low temperature PEMFC with surface tailored carbon nanofibers as catalyst support, International Journal of Hydrogen Energy, 37, 393‐404. doi:10.1016/j.ijhydene.2011.09.055
  • Andersen, S.M., Borghei, M., Lund, P., ve diğ. (2013) Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for Proton Exchange Membrane Fuel Cells, Solid State Ionics, 23, 94‐101. doi: 10.1016/j.ssi.2012.11.020
  • Arici, E., Kaplan, B. Y., Mert, A. M., Gursel, S. A., & Kinayyigit, S. (2019) An effective electrocatalyst based on platinum nanoparticles supported with graphene nanoplatelets and carbon black hybrid for PEM fuel cells, International Journal of Hydrogen Energy, 44(27), 14175-14183.
  • Daş, E., Gürsel, S.A., Şanlı, L.I., Yurtcan, A.B. (2017) Thermodynamically controlled Pt deposition over graphene nanoplatelets: effect of Pt loading on PEM fuel cell performance. International Journal of Hydrogen Energy, 42, 19246‐19256. doi: 10.1016/j.ijhydene.2018.11.210
  • Daş, E., Kaplan, B. Y., Gürsel, S. A., ve Yurtcan, A. B. (2019) Graphene nanoplatelets-carbon black hybrids as an efficient catalyst support for Pt nanoparticles for polymer electrolyte membrane fuel cells, Renewable Energy, 139, 1099-1110. doi:10.1016/j.renene.2019.02.137
  • Figueiredo, J.L. ve Pereira, M.F.R. (2013) Synthesis and functionalization of carbon xerogels to be used as supports for fuel cell catalysts, Journal of Energy Chemistry, 22, 195‐201. doi: 10.1016/S2095-4956(13)60025-X
  • Gasteiger, H. A., Kocha, S. S., Sompalli, B., ve Wagner, F. T. (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, 56(1-2), 9-35. doi: 10.1016/j.apcatb.2004.06.021
  • Gasteiger, H. A., ve Yan, S. G. (2004) Dependence of PEM fuel cell performance on catalyst loading, Journal of Power Sources, 127(1-2), 162-171. doi: 10.1016/j.jpowsour.2003.09.013
  • Hong, T.Z., Xue, Q., Yang, Z.-Y., Dong, Y.-P. (2016) Great-enhanced performance of Pt nanoparticles by the unique carbon quantum dot/reduced graphene oxide hybrid supports towards methanol electrochemical oxidation, Journal of Power Sources, 303,109–117. doi: 10.1016/j.jpowsour.2015.10.092
  • Hsueh, Y.J., Yu, C.C., Lee, K.R., ve diğ. (2013) Ordered porous carbon as the catalyst support for proton‐exchange membrane fuel cells, International Journal of Hydrogen Energy. 38,10998‐11003. doi:10.1016/j.ijhydene.2013.01.007
  • Jung, J.H., Park, H.J., Kim, J., Hur, S.H., (2014) Highly durable Pt/graphene oxide and Pt/C hybrid catalyst for polymer electrolyte membrane fuel cell, Journal of Power Sources, 248, 1156-1162. doi:10.1016/j.jpowsour.2013.10.055
  • Kaplan, B. Y., Haghmoradi, N., Biçer, E., Merino, C., ve Gürsel, S. A. (2018) High performance electrocatalysts supported on graphene based hybrids for polymer electrolyte membrane fuel cells, International Journal of Hydrogen Energy, 43(52), 23221-23230. doi: 10.1016/j.ijhydene.2018.10.222
  • Karteri, İ., Karataş, Ş., Al-Ghamdi, A., Yakuphanoğlu, F., (2015) The electrical characteristics of thin film transistors with graphene oxide and organic insulators, Synthetic Metals, 199, 241– 245. doi: 10.1016/j.synthmet.2014.11.036
  • Kundu, P., Nethravathi, C., Deshpande, P.A., Rajamathi, M., Madras, G., Ravishankar, N. (2011) Ultrafast microwave‐assisted route to surfactant‐free ultrafine Pt nanoparticles on graphene: synergistic co‐reduction mechanism and high catalytic activity, Chemistry of Materials, 23, 2772‐2780. doi: 10.1021/cm200329a
  • Liao, K.H., Mittal, A., Bose, S., Leighton, C., Mkhoyan, K.A., Macosko, C.W., (2011) Aqueous only route toward graphene from graphite oxide, ACS Nano, 5(2), 1253-1258. doi:10.1021/nn1028967
  • Lim, B., Jiang, M., Camargo, P.H.C., Cho, E.C., Tao, J., Lu, X., Zhu, Y., Xia, Y. (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction, Science, 324, 1302-1305. doi: 10.1126/science.1170377
  • Lori, O., ve Elbaz, L. (2020) Recent advances in synthesis and utilization of ultra‐low loading of precious metal‐based catalysts for fuel cells, ChemCatChem, 12(13), 3434-3446 doi:10.1002/cctc.202000001
  • Marinkas, A., Arena, F., Mitzel, J., Prinz, G. M., Heinzel, A., Peinecke, V. ve Natter, H. (2013) Graphene as catalyst support: The influences of carbon additives and catalyst preparation methods on the performance of PEM fuel cells, Carbon, 58, 139-150. doi: 10.1016/j.carbon.2013.02.043
  • Mondal, A. ve Jana, N. R., (2014) Surfactant-free, stable noble metal–graphene nanocomposite as high performance electrocatalyst, ACS Catalysis, 4(2), 593-599. doi: 0.1021/cs401032p
  • Park, S., Shao, Y., Wan, H., Rieke, P. C., Viswanathan, V. V., Towne, S. A., ... ve Wang, Y. (2011), Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells. Electrochemistry communications, 13(3), 258-261. doi: 10.1016/j.elecom.2010.12.028
  • Shahgaldi, S. ve Hamelin, J. (2015) Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review, Carbon, 94, 705‐728. doi: 10.1016/j.carbon.2015.07.055
  • Sharma, S., Ganguly, A., Papakonstantinou, P., ve diğ. (2010) Rapid microwave synthesis of CO tolerant reduced graphene oxide‐supported platinum electrocatalysts for oxidation of methanol, Journal of Physical Chemistry C, 114,19459‐19466. doi: 10.1021/jp107872z
  • Song, J., Li, G., Qiao, J. (2015) Ultrafine porous carbon fiber and its supported platinum catalyst for enhancing performance of proton exchange membrane fuel cells, Electrochimica Acta, 177, 174‐180. doi: 10.1016/j.electacta.2015.03.142
  • Sopian, K., Daud, W.R.W., (2006) Challenges and future developments in proton exchange membrane fuel cells, Renewable Energy, 31(5), 719-727. doi: 10.1016/j.renene.2005.09.003
  • Şanlı, L.I., Bayram, V., Yarar, B., Ghobadi, S., Gürsel, S.A. (2016) Development of graphene supported platinum nanoparticles for polymer electrolyte membrane fuel cells: effect of support type and impregnation–reduction methods, International Journal of Hydrogen Energy, 41, 3414‐3427. doi: 10.1016/j.ijhydene.2015.12.166
  • Wang, Y., Jin, J., Yang, S., Li, G., Qiao, J. (2015) Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC, Electrochimica Acta, 177, 181‐189. doi: 10.1016/j.electacta.2015.01.134
  • Yarar Kaplan, B., Haghmoradi, N., Jamil, E., Merino, C., Alkan Gürsel, S. (2020) Platinum nanoparticles decorated carbon nanofiber hybrids as highly active electrocatalysts for polymer electrolyte membrane fuel cells, International Journal of Energy Research, 44(13), 10251-10261. doi: 10.1002/er.5646
  • Yılmaz, M. S., Kaplan, B. Y., Metin, Ö., ve Gürsel, S. A. (2018) A facile synthesis and assembly of ultrasmall Pt nanoparticles on reduced graphene oxide‑carbon black hybrid for enhanced performance in PEMFC, Materials & Design, 151, 29-36. doi: 10.1016/j.matdes.2018.04.041
  • Zecevic, S.K., Wainright, J.S., Litt, M.H., Gojkovic, S.L., Savinell, R.F. (1997) Kinetics of O 2 Reduction on a Pt Electrode Covered with a Thin Film of Solid Polymer Electrolyte, Journal of Electrochemical Society, 144, 2973–2982.

Development of Reduced Graphene Oxide - Carbon Nanofiber Hybrid Supported Platinum Electrocatalysts for Polymer Electrolyte Membrane (PEM) Fuel Cells

Year 2021, Volume: 26 Issue: 2, 365 - 378, 31.08.2021
https://doi.org/10.17482/uumfd.790349

Abstract

Increasing the efficiency of the electrocatalyst for polymer electrolyte membrane (PEM) fuel cell’s electrode is very important in terms of lower the cost and commercialization. In recent years, the
use of next generation electrocatalysts has received great attention due to the disadvantages such as low activity and performance of commercial carbon black supported platinum (Pt/C) electrocatalysts. Therefore, here, a hybrid carbon structure based on reduced graphene oxide (rGO) and carbon nanofiber (CNF) was used as a catalyst support and Pt nanoparticles were synthesized on these supports. The simple, environmentally friendly, and cheap microwave-assisted (MW) synthesis technique was used for the synthesis of Pt nanoparticles on rGO /CNF electrocatalysts (Pt/CNF and Pt/rGO-CNF). By means of microwave assisted synthesis, one-step, fast and efficient synthesis has been designed. Physical characterization of electrocatalysts have been performed by using X-ray diffraction (XRD), RAMAN spectroscopy, transmission electron microscopy (TEM) techniques. Electrochemical activity of electrocatalysts were investigated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). Additionally, performance tests were carried out in the fuel cell. Pt/rGO-CNF showed higher catalytic activity and fuel cell performance (maximum power density: 449 mW.cm-2) compared to Pt/CNF. The obtained results show that the Pt/rGO-CNF hybrid catalysts are highly promising PEM fuel cell electrode materials.

References

  • Acres, G.J.K. (2001) Recent advances in fuel cell technology and its applications, Journal of Power Sources, 100, 60–66. doi: 10.1016/S0378-7753(01)00883-7
  • Álvarez, G., Alcaide, F., Cabot, P.L., Lázaro, M.J., Pastor, E., Solla‐Gullón, J. (2012) Electrochemical performance of low temperature PEMFC with surface tailored carbon nanofibers as catalyst support, International Journal of Hydrogen Energy, 37, 393‐404. doi:10.1016/j.ijhydene.2011.09.055
  • Andersen, S.M., Borghei, M., Lund, P., ve diğ. (2013) Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for Proton Exchange Membrane Fuel Cells, Solid State Ionics, 23, 94‐101. doi: 10.1016/j.ssi.2012.11.020
  • Arici, E., Kaplan, B. Y., Mert, A. M., Gursel, S. A., & Kinayyigit, S. (2019) An effective electrocatalyst based on platinum nanoparticles supported with graphene nanoplatelets and carbon black hybrid for PEM fuel cells, International Journal of Hydrogen Energy, 44(27), 14175-14183.
  • Daş, E., Gürsel, S.A., Şanlı, L.I., Yurtcan, A.B. (2017) Thermodynamically controlled Pt deposition over graphene nanoplatelets: effect of Pt loading on PEM fuel cell performance. International Journal of Hydrogen Energy, 42, 19246‐19256. doi: 10.1016/j.ijhydene.2018.11.210
  • Daş, E., Kaplan, B. Y., Gürsel, S. A., ve Yurtcan, A. B. (2019) Graphene nanoplatelets-carbon black hybrids as an efficient catalyst support for Pt nanoparticles for polymer electrolyte membrane fuel cells, Renewable Energy, 139, 1099-1110. doi:10.1016/j.renene.2019.02.137
  • Figueiredo, J.L. ve Pereira, M.F.R. (2013) Synthesis and functionalization of carbon xerogels to be used as supports for fuel cell catalysts, Journal of Energy Chemistry, 22, 195‐201. doi: 10.1016/S2095-4956(13)60025-X
  • Gasteiger, H. A., Kocha, S. S., Sompalli, B., ve Wagner, F. T. (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, 56(1-2), 9-35. doi: 10.1016/j.apcatb.2004.06.021
  • Gasteiger, H. A., ve Yan, S. G. (2004) Dependence of PEM fuel cell performance on catalyst loading, Journal of Power Sources, 127(1-2), 162-171. doi: 10.1016/j.jpowsour.2003.09.013
  • Hong, T.Z., Xue, Q., Yang, Z.-Y., Dong, Y.-P. (2016) Great-enhanced performance of Pt nanoparticles by the unique carbon quantum dot/reduced graphene oxide hybrid supports towards methanol electrochemical oxidation, Journal of Power Sources, 303,109–117. doi: 10.1016/j.jpowsour.2015.10.092
  • Hsueh, Y.J., Yu, C.C., Lee, K.R., ve diğ. (2013) Ordered porous carbon as the catalyst support for proton‐exchange membrane fuel cells, International Journal of Hydrogen Energy. 38,10998‐11003. doi:10.1016/j.ijhydene.2013.01.007
  • Jung, J.H., Park, H.J., Kim, J., Hur, S.H., (2014) Highly durable Pt/graphene oxide and Pt/C hybrid catalyst for polymer electrolyte membrane fuel cell, Journal of Power Sources, 248, 1156-1162. doi:10.1016/j.jpowsour.2013.10.055
  • Kaplan, B. Y., Haghmoradi, N., Biçer, E., Merino, C., ve Gürsel, S. A. (2018) High performance electrocatalysts supported on graphene based hybrids for polymer electrolyte membrane fuel cells, International Journal of Hydrogen Energy, 43(52), 23221-23230. doi: 10.1016/j.ijhydene.2018.10.222
  • Karteri, İ., Karataş, Ş., Al-Ghamdi, A., Yakuphanoğlu, F., (2015) The electrical characteristics of thin film transistors with graphene oxide and organic insulators, Synthetic Metals, 199, 241– 245. doi: 10.1016/j.synthmet.2014.11.036
  • Kundu, P., Nethravathi, C., Deshpande, P.A., Rajamathi, M., Madras, G., Ravishankar, N. (2011) Ultrafast microwave‐assisted route to surfactant‐free ultrafine Pt nanoparticles on graphene: synergistic co‐reduction mechanism and high catalytic activity, Chemistry of Materials, 23, 2772‐2780. doi: 10.1021/cm200329a
  • Liao, K.H., Mittal, A., Bose, S., Leighton, C., Mkhoyan, K.A., Macosko, C.W., (2011) Aqueous only route toward graphene from graphite oxide, ACS Nano, 5(2), 1253-1258. doi:10.1021/nn1028967
  • Lim, B., Jiang, M., Camargo, P.H.C., Cho, E.C., Tao, J., Lu, X., Zhu, Y., Xia, Y. (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction, Science, 324, 1302-1305. doi: 10.1126/science.1170377
  • Lori, O., ve Elbaz, L. (2020) Recent advances in synthesis and utilization of ultra‐low loading of precious metal‐based catalysts for fuel cells, ChemCatChem, 12(13), 3434-3446 doi:10.1002/cctc.202000001
  • Marinkas, A., Arena, F., Mitzel, J., Prinz, G. M., Heinzel, A., Peinecke, V. ve Natter, H. (2013) Graphene as catalyst support: The influences of carbon additives and catalyst preparation methods on the performance of PEM fuel cells, Carbon, 58, 139-150. doi: 10.1016/j.carbon.2013.02.043
  • Mondal, A. ve Jana, N. R., (2014) Surfactant-free, stable noble metal–graphene nanocomposite as high performance electrocatalyst, ACS Catalysis, 4(2), 593-599. doi: 0.1021/cs401032p
  • Park, S., Shao, Y., Wan, H., Rieke, P. C., Viswanathan, V. V., Towne, S. A., ... ve Wang, Y. (2011), Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells. Electrochemistry communications, 13(3), 258-261. doi: 10.1016/j.elecom.2010.12.028
  • Shahgaldi, S. ve Hamelin, J. (2015) Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review, Carbon, 94, 705‐728. doi: 10.1016/j.carbon.2015.07.055
  • Sharma, S., Ganguly, A., Papakonstantinou, P., ve diğ. (2010) Rapid microwave synthesis of CO tolerant reduced graphene oxide‐supported platinum electrocatalysts for oxidation of methanol, Journal of Physical Chemistry C, 114,19459‐19466. doi: 10.1021/jp107872z
  • Song, J., Li, G., Qiao, J. (2015) Ultrafine porous carbon fiber and its supported platinum catalyst for enhancing performance of proton exchange membrane fuel cells, Electrochimica Acta, 177, 174‐180. doi: 10.1016/j.electacta.2015.03.142
  • Sopian, K., Daud, W.R.W., (2006) Challenges and future developments in proton exchange membrane fuel cells, Renewable Energy, 31(5), 719-727. doi: 10.1016/j.renene.2005.09.003
  • Şanlı, L.I., Bayram, V., Yarar, B., Ghobadi, S., Gürsel, S.A. (2016) Development of graphene supported platinum nanoparticles for polymer electrolyte membrane fuel cells: effect of support type and impregnation–reduction methods, International Journal of Hydrogen Energy, 41, 3414‐3427. doi: 10.1016/j.ijhydene.2015.12.166
  • Wang, Y., Jin, J., Yang, S., Li, G., Qiao, J. (2015) Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC, Electrochimica Acta, 177, 181‐189. doi: 10.1016/j.electacta.2015.01.134
  • Yarar Kaplan, B., Haghmoradi, N., Jamil, E., Merino, C., Alkan Gürsel, S. (2020) Platinum nanoparticles decorated carbon nanofiber hybrids as highly active electrocatalysts for polymer electrolyte membrane fuel cells, International Journal of Energy Research, 44(13), 10251-10261. doi: 10.1002/er.5646
  • Yılmaz, M. S., Kaplan, B. Y., Metin, Ö., ve Gürsel, S. A. (2018) A facile synthesis and assembly of ultrasmall Pt nanoparticles on reduced graphene oxide‑carbon black hybrid for enhanced performance in PEMFC, Materials & Design, 151, 29-36. doi: 10.1016/j.matdes.2018.04.041
  • Zecevic, S.K., Wainright, J.S., Litt, M.H., Gojkovic, S.L., Savinell, R.F. (1997) Kinetics of O 2 Reduction on a Pt Electrode Covered with a Thin Film of Solid Polymer Electrolyte, Journal of Electrochemical Society, 144, 2973–2982.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Begüm Yarar Kaplan 0000-0002-1691-0645

Publication Date August 31, 2021
Submission Date September 4, 2020
Acceptance Date May 24, 2021
Published in Issue Year 2021 Volume: 26 Issue: 2

Cite

APA Yarar Kaplan, B. (2021). POLİMER ELEKTROLİT MEMBRANLI (PEM) YAKIT PİLLERİ İÇİN İNDİRGENMİŞ GRAFEN OKSİT - KARBON NANOFİBER HİBRİT DESTEKLİ PLATİN ELEKTROKATALİZÖRLERİNİN GELİŞTİRİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 365-378. https://doi.org/10.17482/uumfd.790349
AMA Yarar Kaplan B. POLİMER ELEKTROLİT MEMBRANLI (PEM) YAKIT PİLLERİ İÇİN İNDİRGENMİŞ GRAFEN OKSİT - KARBON NANOFİBER HİBRİT DESTEKLİ PLATİN ELEKTROKATALİZÖRLERİNİN GELİŞTİRİLMESİ. UUJFE. August 2021;26(2):365-378. doi:10.17482/uumfd.790349
Chicago Yarar Kaplan, Begüm. “POLİMER ELEKTROLİT MEMBRANLI (PEM) YAKIT PİLLERİ İÇİN İNDİRGENMİŞ GRAFEN OKSİT - KARBON NANOFİBER HİBRİT DESTEKLİ PLATİN ELEKTROKATALİZÖRLERİNİN GELİŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, no. 2 (August 2021): 365-78. https://doi.org/10.17482/uumfd.790349.
EndNote Yarar Kaplan B (August 1, 2021) POLİMER ELEKTROLİT MEMBRANLI (PEM) YAKIT PİLLERİ İÇİN İNDİRGENMİŞ GRAFEN OKSİT - KARBON NANOFİBER HİBRİT DESTEKLİ PLATİN ELEKTROKATALİZÖRLERİNİN GELİŞTİRİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 2 365–378.
IEEE B. Yarar Kaplan, “POLİMER ELEKTROLİT MEMBRANLI (PEM) YAKIT PİLLERİ İÇİN İNDİRGENMİŞ GRAFEN OKSİT - KARBON NANOFİBER HİBRİT DESTEKLİ PLATİN ELEKTROKATALİZÖRLERİNİN GELİŞTİRİLMESİ”, UUJFE, vol. 26, no. 2, pp. 365–378, 2021, doi: 10.17482/uumfd.790349.
ISNAD Yarar Kaplan, Begüm. “POLİMER ELEKTROLİT MEMBRANLI (PEM) YAKIT PİLLERİ İÇİN İNDİRGENMİŞ GRAFEN OKSİT - KARBON NANOFİBER HİBRİT DESTEKLİ PLATİN ELEKTROKATALİZÖRLERİNİN GELİŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/2 (August 2021), 365-378. https://doi.org/10.17482/uumfd.790349.
JAMA Yarar Kaplan B. POLİMER ELEKTROLİT MEMBRANLI (PEM) YAKIT PİLLERİ İÇİN İNDİRGENMİŞ GRAFEN OKSİT - KARBON NANOFİBER HİBRİT DESTEKLİ PLATİN ELEKTROKATALİZÖRLERİNİN GELİŞTİRİLMESİ. UUJFE. 2021;26:365–378.
MLA Yarar Kaplan, Begüm. “POLİMER ELEKTROLİT MEMBRANLI (PEM) YAKIT PİLLERİ İÇİN İNDİRGENMİŞ GRAFEN OKSİT - KARBON NANOFİBER HİBRİT DESTEKLİ PLATİN ELEKTROKATALİZÖRLERİNİN GELİŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 26, no. 2, 2021, pp. 365-78, doi:10.17482/uumfd.790349.
Vancouver Yarar Kaplan B. POLİMER ELEKTROLİT MEMBRANLI (PEM) YAKIT PİLLERİ İÇİN İNDİRGENMİŞ GRAFEN OKSİT - KARBON NANOFİBER HİBRİT DESTEKLİ PLATİN ELEKTROKATALİZÖRLERİNİN GELİŞTİRİLMESİ. UUJFE. 2021;26(2):365-78.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.