Review
BibTex RIS Cite

BİYOMEDİKAL UYGULAMALARINDA EKLEMELİ İMALAT TEKNOLOJİLERİ

Year 2022, Volume: 27 Issue: 1, 503 - 522, 30.04.2022
https://doi.org/10.17482/uumfd.991197

Abstract

Genellikle üç boyutlu (3B) baskı olarak adlandırılan eklemeli imalat (Eİ) teknolojisi son yıllarda pek çok alanda kullanılmaktadır. Teknolojinin tanıtılmasıyla, sektörler arası yayılımı artmakta ve tıpta biyofabrikasyon alanının gelişimini hızlandırmaktadır. Eklemeli imalattaki son gelişmeler, hastaya özel sağlık bakım çözümlerinin daha da geliştirilmesini kolaylaştırmaktadır. Özellikle kişiselleştirilmiş tedavi yöntemlerine istinaden üretimin planlanması onu sağlık uygulamalarında tercih nedeni saymaktadır. İmplantlar, ilaç dağıtım cihazları, tıbbi aletler, protezler gibi pek çok sağlık ürünü ve hizmetinin özelleştirilmesi, eklemeli imalat teknolojileri olmadan, imkânsız değilse bile son derece zor olmaktadır. Bugün, eklemeli imalat; çeşitli uygulamalara tabi tutulabilen, metal, seramik, polimer malzemeler ve biyomalzemeler kullanılarak gerçek üç boyutlu nesne yapmak için iyi bilinen teknolojidir.
Bu çalışma, eklemeli imalatın tıp alanındaki uygulamalarını, biyobaskı teknolojisi ile doku ve organ gelişimini, medikal alandaki malzeme yelpazesini ve bu teknoloji için gelecekteki araştırma ihtiyaçlarını sunmaktadır.

References

  • 1. Ahangar, P., Cooke, M.E., Weber, M.H., Rosenzweig, D.H. (2019) Current Biomedical applications of 3D printing and additive manufacturing, Applied Sciences, 9(8):1713. doi:10.3390/app9081713.
  • 2. Alalwan, N., Abozeid, A., ElHabshy, A.A., Alzahrani, A. (2021) Efficient 3D deep learning model for medical image semantic segmentation, Alexandria Engineering Journal, 60(1): 1231-1239. doi:10.1016/j.aej.2020.10.046.
  • 3. Ariz, A., Tasneem, I., Bharti, D., Vaish, A., Haleem, A., Javaid, M. (2021) Is additive manufacturing of patient specific implant beneficial for orthopedics, Apollo Medicine, 18(1): 33-40.
  • 4. Beliën, H., Biesmans, H., Steenwerck, A., Bijnens, E., Dierick, C. (2017) Prebending of osteosynthesis plate using 3D printed models to treat symptomatic os acromiale and acromial fracture, Journal of Experimental Orthopaedics, 4(1): 34. doi:10.1186/s40634-017-0111-7.
  • 5. Bhargav, A., Sanjairaj, V., Rosa, V., Feng, L.W., Yh, J.F. (2017) Applications of additive manufacturing in dentistry, Journal of Biomedical Materials Research B: Applied Biomaterials, 106(5):2058-2064. doi: 10.1002/jbm.b.33961.
  • 6. Biglino, G., Capelli, C., Binazzi, A., Reggiani, R., Cosentino, D., Migliavacca, F., Bonhoeffer, P., Taylor, A.M., Schievano, S. (2012) Virtual and real bench testing of a new percutaneous valve device: a case study, EuroIntervention, 8: 120-128. doi: 10.4244/EIJV8I1A19.
  • 7. Biswal, T., BadJena, S.K., Pradhan, D. (2020) Sustainable biomaterials and their applications, Materials Today: Proceedings, 30(2): 274-282. doi:10.1016/j.matpr.2020.01.437.
  • 8. Blaya, F., Pedro, P.S., Silva, J.L., Amato, R.D., Heras, E.S., Juanes, J.A. (2018) Design of an orthopedic product by using additive manufacturing technology: the arm splint, Journal of Medical Systems, 42(54).
  • 9. Bose, S., Ke, D., Sahasrabudhe, H., Bandyopadhyay, A. (2017) Additive manufacturing of biomaterials, Progress in Materials Science, 93: 45-111.
  • 10. Bozkurt, Y., Gülsoy, H.Ö, Karayel, E. (2021) Eklemeli imalat teknolojilerinin tıbbi ekipmanların üretiminde kullanımı, El-Cezerî Fen ve Mühendislik Dergisi, 8(2): 962-980. doi: 10.31202/ecjse.902023.
  • 11. Chen, C.K., Jin, Y., Wensman, J., Shih, A. (2016) Additive manufacturing of custom orthoses and prostheses, Additive Manufacturing: Part A, 12: 77-89. doi:10.1016/j.addma.2016.04.002.
  • 12. Choi, J., Kwon, O.C., Jo, W., Lee, H.J., Moon, M.W. (2015) 4D printing technology, 3D printing and additive manufacturing, 2(4): 159-167. doi:10.1089/3dp.2015.0039.
  • 13. Christ, P.F., Ettlinger, F., Grün, F., Elshaer, M.E.A., Lipkov, J., Schlecht, S., Ahmaddy, F., Tatavarty, S., Bickel, M., Bilic, P., Rempfler, M., Hofmann, F., Anastasi, M.D., Ahmadi, S.A., Kaissis, G., Holch, J., Sommer, W., Braren, R., Heinemann, V., Menze, B. (2017) Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks.
  • 14. Cleymand, F., Poerio, A., Mamanov, A., Elkhoury, K., Ikhelf, L., Jehl, J.P., Kahn, C.J.F., Ponçot, M., Tehrany, E.A., Mano, J.F. (2021) Development of novel chitosan/guar gum inks for extrusion-based 3D bioprinting: Process, printability and properties, Bioprinting, 21. doi:10.1016/j.bprint.2020.e00122.
  • 15. Cohen, D.L., Lipton, J.I., Bonassar, L.J., Lipson, H. (2010) Additive manufacturing for in situ repair of osteochondral defects, Biofabrication, 2(3). doi:10.1088/1758-5082/2/3/035004.
  • 16. Culmone, C., Smit, G., Breedveld P. (2019) Additive manufacturing of medical instruments, Additive Manufacturing, 27: 461-473.
  • 17. Çelik, İ., Karakoç, F., Çakır, M.C., Duysak, A. (2013) Hızlı prototipleme teknolojileri ve uygulama alanları, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31: 51- 70.
  • 18. Das, S., Pati, F., Choi, Y.J., Rijal, G., Shim, J.H., Kim, S.W., Ray, A.R., Cho, D.W., Ghosh, S. (2015) Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs, Acta Biomaterialia, 11: 233-46. doi: 10.1016/j.actbio.2014.09.023.
  • 19. Dawood, A., Marti, B., Sauret-Jackson, V., Darwood A. (2015) 3D printing in dentistry, British Dental Journal, 219(11):521-9. doi: 10.1038/sj.bdj.2015.914.
  • 20. Demircioğlu, P. (2018) Diş ve implant mikromorfolojik yapıların sinyal ve görüntü işleme yöntemleri ile değerlendirilmesi, El-Cezerî Fen ve Mühendislik Dergisi, 5(3): 741-748. doi:10.31202/ecjse.417791.
  • 21. Fangueiro, R., Carrilho, R., Antoniassi, L., Pina, P. (2009) Braided corrugated textile vascular prosthesis and process of producing same.
  • 22. Farooqi, K.M., Cooper, C., Chelliah, A., Saeed, O., Chai, P.J., Jambawalikar, S.R., Lipson, H., Bacha, E.A., Einstein, A.J., Jorde, U.P. (2019) 3D printing and heart failure: The Present and the Future, JACC: Heart Failure, 7(2): 132-142. doi:10.1016/j.jchf.2018.09.011.
  • 23. Frizziero, L., Liverani, A., Donnici, G., Osti, F., Neri, M., Maredi, E., Trisolino, G., Stilli, S. (2019) New methodology for diagnosis of orthopedic diseases through additive manufacturing models, Symmetry, 11(4):542. doi: 10.3390/sym11040542.
  • 24. Galante, R., Figueiredo-Pina, C.G., Serro, A.P. (2019) Additive manufacturing of ceramics for dental applications, Dental Materials, 35(6): 825-846. doi: 10.1016/j.dental.2019.02.026.
  • 25. Gee, A., Prager, R., Treece, G., Cash, C., Berman, L. (2004) Processing and visualizing three-dimensional ultrasound data, The British Journal of Radiology, 77:186-193. doi: 10.1259/bjr/80676194.
  • 26. Ghomi, E.R., Khosrav, F., Neisiany, R.E., Singh, S., Ramakrishna, S. (2021) Future of additive manufacturing in healthcare, Current Opinion in Biomedical Engineering, 17. doi:10.1016/j.cobme.2020.100255.
  • 27. Global 3D printing products and services market size from 2020 to 2026, (2021). Erişim Adresi: https://www.statista.com/statistics/315386/global-market-for-3d-printers/ (Erişim Tarihi: 12.02.2022)
  • 28. Guo, N., Leu, M.C. (2013) Additive manufacturing: technology, applications and research needs, Frontier in Mechanical Engineering, 8(3): 215-243. doi:10.1007/s11465-013-0248-8.
  • 29. Haleem, A., Javaid, M. (2020) 3D printed medical parts with different materials using additive manufacturing, Clinical Epidemiology and Global Health, 8(1):215-223. doi:/10.1016/j.cegh.2019.08.002.
  • 30. Haleem, A., Javaid, M., Saxena, A. (2018) Additive manufacturing applications in cardiology, The Egyptian Heart Journal, 70(4): 433-441. doi:/10.1016/j.ehj.2018.09.008.
  • 31. Harper, N.G., Russell, E.M., Wilken, J.M., Neptune, R.R. (2014) Selective laser sintered versus carbon fiber passive-dynamic ankle-foot orthoses: a comparison of patient walking performance, Journal of Biomechanical Engineering, 136(9). doi: 10.1115/1.4027755.
  • 32. Hazeveld, A., Slater, J.J.R.H., Ren, Y. (2014) Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques, American Journal of Orthodontics and Dentofacial Orthopedics, 145: 108-115. doi: 10.1016/j.ajodo.2013.05.011.
  • 33. Herbert, N., Simpson, D., Spence, W.D., Iyon, W. (2015) A preliminary investigation into the development of 3-D printing of prosthetic sockets, Journal of Rehabilitation Research and Devolopment (JRRD), 42(2): 141-146. doi:10.1682/JRRD.2004.08.0134.
  • 34. Huang, Z., Zhang, L., Zhu, J., Zhang, X. (2015) Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology, The Journal of Prosthetic Dentistry, 113: 623-7. doi: 10.1016/j.prosdent.2014.10.012.
  • 35. Huotilainen, E., Paloheimo, M., Salmi, M., Paloheimo, K.S., Bjoürkstrand, R., Tuomi, J., Markkola, A., Maükitie, A. (2014) Imaging requirements for medical applications of additive manufacturing, Acta Radiologica, 55(1): 78-85. doi: 10.1177/0284185113494198.
  • 36. Javaid, M., Haleem, A. (2018) 4D printing applications in medical field, Clinical Epidemiology and Global Health, 7(3): 317-321. doi:/10.1016/j.cegh.2018.09.007.
  • 37. Javaid, M., Haleem, A. (2018) Additive manufacturing applications in orthopaedics, Journal of Clinical Orthopaedics and Trauma, 9(3): 202-206. doi:10.1016/j.jcot.2018.04.008.
  • 38. Javaid, M., Haleem, A. (2018) Additive manufacturing applications in medical cases, Alexandria Journal of Medicine, 54(4): 411-422. doi:10.1016/j.ajme.2017.09.003.
  • 39. Javaid, M., Haleem, A. (2019) Industry 4.0 applications in medical field, Current Medicine Research and Practice, 9(3): 102-109. doi:10.1016/j.cmrp.2019.04.001.
  • 40. Javaid, M., Haleem, A. (2019) Current status and applications of additive manufacturing in dentistry, Journal of Oral Biology and Craniofacial Research, 9(3):179-185. doi: 10.1016/j.jobcr.2019.04.004.
  • 41. Javaid, M., Haleem, A. (2020) 3D printed tissue and organ using additive manufacturing: an overview, Clinical Epidemiology and Global Health, 8(2): 586-594. doi:10.1016/j.cegh.2019.12.008.
  • 42. Karasu, B., Karabulut, D., Biçer, A., Varol, U.C., Oytaç, Z.E. (2019) Seramik sektöründe ink-jet dekorasyon uygulamaları, El-Cezerî Fen ve Mühendislik Dergisi, 6(3): 691-711. doi:10.31202/ecjse.572176.
  • 43. Kim, H. R., Jang, S., Kim, Y. K., Son, J. S., Min, B. K., Kim, K., Kwon T. (2016) Microstructures and mechanical properties of Co-Cr dental alloys fabricated by three CAD/CAM-based processing techniques. Materials, 9(7):1-14. doi:10.3390/ma9070596.
  • 44. Kumar, R., Kumar, M., Chohan, J.S. (2021) The role of additive manufacturing for biomedical applications: A critical review, Journal of Manufacturing Processes, 64: 828-850. doi: 10.1016/j.jmapro.2021.02.022.
  • 45. Lal, H., Patralekh, M.H. (2018) 3D printing and its applications in orthopaedic trauma: a technological marve, Journal of Clinical Orthopaedics and Trauma, 9(3): 260-268. doi: 10.1016/j.jcot.2018.07.022.
  • 46. Lee, V.K., Dias, A., Ozturk, M.S., Chen, K., Tricomi, B., Corr, D.T., Intes, X., Dai, G. (2015) 3D Bioprinting and 3D Imaging for Stem Cell Engineering, In: Turksen K. (eds) Bioprinting in Regenerative Medicine, Stem Cell Biology and Regenerative Medicine, Springer, 33-66. doi:10.1007/978-3-319-21386-6_2.
  • 47. Li, C., Psignano, D., Zhao, Y., Xue, j. (2020) Advances in medical applications of additive manufacturing, engineering, 6(11): 1222-1231. doi:10.1016/J.ENG.2020.02.018.
  • 48. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A. (2018) H-denseunet: hybrid densely connected unet for liver and tumor segmentation from CT volumes, IEEE Transactions on Medical Imaging. doi: 10.1109/TMI.2018.2845918.
  • 49. Liu, G., Zhang, X., Chen, X., He, Y., Cheng, L., Huo, M., Yin, J., Hao, F., Chen, S., Wang, P., Yi, S., Wan, L., Mao, Z., Chen, Z., Wang, X., Cao, Z., Lua, J. (2021) Additive manufacturing of structural materials, Materials Science and Engineering: R: Reports. doi:/10.1016/j.mser.2020.100596.
  • 50. Liu, N., Ye, X., Yao, B., Zhao, M., Wu, P., Liu, G., Zhuang, D., Jiang, H., Chen, X., He, Y., Huang, S., Shu, P. (2021) Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration, Bioactive Materials, 6(5): 1388-1401. doi:10.1016/j.bioactmat.2020.10.021.
  • 51. Luo, H., Szary, J.M., Wang, Z., Sabiniewicz, R., Liu, Y. (2017) Three-dimensional printing in cardiology: current applications and future challenges, Cardiology Journal, 24(4): 436-444. doi: 10.5603/CJ.a2017.0056.
  • 52. Matai, I., Kau, G., Seyedsalehi, A., McClinton, A., Laurencin, C.T. (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering, Biomaterials, 226. doi: 10.1016/j.biomaterials.2019.119536.
  • 53. Methani, M.M., Cesar, P.F., Miranda, R.B. de P., Morimoto, S., Özcan, M., Revilla-León, M. (2020) Additive manufacturing in dentistry: current technologies, clinical applications, and limitations, Current Oral Health Reports, 7: 327-334. doi:10.1007/s40496-020-00288-w.
  • 54. Mok, S.W., Nizak, R., Fu, S.C., Ho, K.W.K., Qin, L., Saris, D., Chan, K.M., Malda, J. (2016) From the printer: potential of three dimensional printing for orthopaedic applications, Journal of Orthopaedic Translation, 6: 42-49. doi:10.1016/j.jot.2016.04.003.
  • 55. Molnár, I., Morovič, L. (2018) Design and manufacture of orthopedic corset using 3D digitization and additive manufacturing, IOP Conferance Series: Materials Science and Engineering, XXIII International Conference on Manufacturing (Manufacturing 2018), 448. doi:10.1088/1757-899X/448/1/012058.
  • 56. Mota, C., Puppi, D., Chiellini, F., Chiellini, E. (2012) Additive manufacturing techniques for the production of tissue engineering constructs, Journal of Tissue Engineering and Regenerative Medicine. doi: 10.1002/term.1635.
  • 57. Munir, K., Biesiekierski, A., Wen, C., Li, Y. (2020) Introduction to biomedical manufacturing, Metallic Biomaterials Processing and Medical Device Manufacturing, 3-29. doi:10.1016/B978-0-08-102965-7.00001-1.
  • 58. Nadagouda, M.N., Rastogi, V., Ginn, M. (2020) A review on 3D printing techniques for medical application, 28: 152-157. doi:10.1016/j.coche.2020.05.007.
  • 59. Narushima, T. (2019) New-generation metallic biomaterials, Metals for Biomedical Devices (Second Edition), Woodhead Publishing Series in Biomaterials, 495-521. doi:10.1533/9781845699246.4.355.
  • 60. Nematollahi, M., Jahadakbar, A., Mahtabi, M.J., Elahinia, M. (2019) Additive manufacturing (AM), Metals for Biomedical Devices (Second Edition), Woodhead Publishing Series in Biomaterials, 331-353. doi:10.1016/B978-0-08-102666-3.00012-2.
  • 61. Noecker, A.M., Kopcak, M.W., White, R.D., Duncan, B.W. (2005) Creating three dimensional patient-specific models of pediatric hearts, ASAIO Journal, 51(2):16A.
  • 62. Osman, R.B., Veen, A.J., Huiberts, D., Wismeijer, D., Alharbi, N. (2017) 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs, Journal of the Mechanical Behavior of Biomedical Materials, 75: 521-528. doi: 10.1016/j.jmbbm.2017.08.018.
  • 63. Özbolat, İ., Yu, Y. (2013) Bioprinting towards organ fabrication: challenges and future trends”, IEEE Transactions on Biomedical Engineering, 60(3): 691-699. doi: 10.1109/TBME.2013.2243912, Epub 2013 Jan 30. PMID: 23372076.
  • 64. Öziç, M.Ü., Özşen, S. (2020) 3B Alzheimer MR görüntülerinin hacimsel kayıp bölgelerindeki voksel değerleri kullanarak sınıflandırılması, El-Cezerî Fen ve Mühendislik Dergisi, 7(3): 1152-1166. doi:10.31202/ecjse.728049.
  • 65. Palousek, D., Rosicky, J., Koutny, D., Stoklásek, P., & Navrat, T. (2014) Pilot study of the wrist orthosis design process, Rapid Prototyping Journal, 20(1): 27-33. doi: 10.1108/RPJ-03-2012-0027.
  • 66. Patel, P., Golhi, P. (2021) Role of additive manufacturing in medical application COVID-19 scenario: India case study, Journal of Manufacturing Systems, 60: 811-822. doi:10.1016/j.jmsy.2020.11.006.
  • 67. Patzelt, S.B.M., Bishti, S., Stampf, S., Att, W. (2014) Accuracy of computer-aided design/computer-aided manufacturing–generated dental casts based on intraoral scanner data, The Journal of the American Dental Associationc, 145: 1133-1140. doi: 10.14219/jada.2014.87.
  • 68. Rebelo, R., Fernandes, M., Fangueiro, R. (2017) Biopolymers in medical implants, Procedia Engineering, 3rd International Conference on Natural Fibers: Advanced Materials for a Greener World, 200: 236-243. doi:10.1016/j.proeng.2017.07.034.
  • 69. Revilla-León, M., Özcan, M. (2017) Additive manufacturing technologies used for 3D Metal printing in dentistry, Current Oral Health Reports, 4: 201-208. doi:10.1007/s40496-017-0152-0.
  • 70. Revilla-León, M., Sadeghpour, M., Özcan, M. (2020) A review of the applications of additive manufacturing technologies used to fabricate metals in ımplant dentistry, Journal of Prosthodontics, 29(7): 579-593. doi: 10.1111/jopr.13212.
  • 71. Riza, S.H., Masood, S.H., Rashid, R.A.R., Chandra, S. (2020) Selective laser sintering in biomedical manufacturing, Metallic Biomaterials Processing and Medical Device Manufacturing, Woodhead Publishing Series in Biomaterials, 193-233. doi:/10.1016/B978-0-08-102965-7.00006-0.
  • 72. Saheb, S.H., Kumar, J.V. (2020) A comprehensive review on additive manufacturing applications, Third International Conference on Inventive Material Science Applications, AIP Conference Proceedings, 2281. doi:10.3844/ajassp.2019.244.272.
  • 73. Salmi, M. (2021) Additive manufacturing processes in medical applications, Materials, 14. doi:10.3390/ma14010191
  • 74. Salmi, M., Paloheimo, K.S., Tuomi, J., Wolff, J., Mäkitie, S. (2013) Accuracy of medical models made by additive manufacturing (rapid manufacturing), Journal of Cranio-Maxillo-Facial Surgery, 41: 603-609. doi: 10.1016/j.jcms.2012.11.041.
  • 75. Sanadhya, S., Vij, N., Chaturvedi, P., Tiwari, S., Arora, B., Modi, Y. K. (2015) Medical applications of additive manufacturing, International Journal of Scientific Progress and Research (IJSPR), 12.
  • 76. Sheoran, A.J., Kumar, H., Arora, P.K., Moona, G. (2020) Bio-medical applications of additive manufacturing, Procedia Manufacturing, 51: 663-670. doi:/10.1016/j.promfg.2020.10.093.
  • 77. Shuai, C., Gao, C., Nie, Y., Hu, H., Zhou, Y., Peng, S. (2011) Structure and properties of nano hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system, Nanotechnology, 22: 285703. doi: 10.1088/0957-4484/22/28/285703.
  • 78. Singh, A.V., Ansari, M.H.D., Wang, S., Laux, P., Luch, A., Kumar, A., Patil, R., Nussberger, S. (2019) The adoption of three-dimensional additive manufacturing from biomedical material design to 3D organ printing, Applied Science, 9(4). doi:10.3390/app9040811.
  • 79. Singh, S., Ramakrishna, S., Singh, R. (2017) Material issues in additive manufacturing, Journal of Manufacturing Processes, 25: 185-200. doi:10.1016/j.jmapro.2016.11.006.
  • 80. Sinha, S.K. (2020) Additive manufacturing (AM) of medical devices and scaffolds for tissue engineering based on 3D and 4D printing”, 3D and 4D printing of polymer nanocomposite materials, processes, Applications, and Challenges, 119-160. doi:10.1016/b978-0-12-816805-9.00005-3.
  • 81. Stanco, D., Urban, P., Tirendi, S., Ciardelli, G., Barrero, J. (2020) 3D bioprinting for orthopaedic applications: Current advances, challenges and regulatory considerations, Bioprinting, 20. doi:10.1016/j.bprint.2020.e00103.
  • 82. Sun, H., Jia, Y., Dong, H., Dong, D., Zheng, J. (2020) Combining additive manufacturing with microfluidics: an emerging method for developing novel organs-on-chips, Current Opinion in Chemical Engineering, 28: 1-9. doi: 10.1016/j.coche.2019.10.006.
  • 83. Şahin, İ., Sarı, İ.M., Şahin, T. (2018) Hızlı prototipleme yaklaşımı ile ortez üretimi: kaynak araştırması, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 6(1): 27-39. doi: 10.29130/dubited.307201.
  • 84. Thwe, P.M., Ren, P. (2020) How many are we missing with ID NOW COVID-19 assay using direct nasopharyngeal swabs? Findings from a mid-sized academic hospital clinical microbiology laboratory, Diagnostic Microbiology and Infectious Disease, 98(2). doi:10.1016/j.diagmicrobio.2020.115123.
  • 85. Tripathi, S., Manoria, A., Agrawal, P. (2020) Additive manufacturing applications in medical field like cardiology and dentistry, EasyChair.
  • 86. Trivedi, M., Jee, J., Silva, S., Blomgren, C., Pontinha, V.M., Dixon, D.L., Tassel, B.V., Bortner, B.J., Williams, C., Gilmer, E., Haring, A.P., Halper, J., Johnson, B.N., Kong, Z., Halquist, M.S., Rocheleau, P.F., Long, T.E., Roper, T., Wijesinghe, D.S.(2018) Additive manufacturing of pharmaceuticals for precision medicine applications: A review of the promises and perils in implementation, 23: 319-328.
  • 87. Tuomi, J., Paloheimo, K.S., Vehviläinen, J., Björkstrand, R., Salmi, M., Huotilainen, E., Kontio, R., Rouse, S., Gibson, I., Mäkitie, A.A. (2014) A novel classification and online platform for planning and documentation of medical applications of additive manufacturing, Surgical Innovation, 21(6): 553-559. doi: 10.1177/1553350614524838.
  • 88. Uygunoğlu, T., Özgüven, S.,B. (2021) 3D yazıcılar için tasarlanan harçlarının ekstrüde edilebilirlikleri, El-Cezerî Fen ve Mühendislik Dergisi, 8(1):410-420. doi:/10.31202/ecjse.852736.
  • 89. Vaish, A., Vaish, R. (2018) 3D printing and its applications in orthopedics, Journal of Clinical Orthopaedics and Trauma, 9(1): 74-75. doi: 10.1016/j.jcot.2018.02.003.
  • 90. Valverde, I. (2017) Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions, Revista Española de Cardiología, 70(4): 282-291. doi: 10.1016/j.rec.2017.01.012.
  • 91. Vanmeensel, K., Lietaert, K., Vrancken, B., Dadbakhsh, S., Li, X., Kruth, J.P., Krakhmalev, P., Yadroitsev, I., Humbeeck, J.V. (2018) Additively manufactured metals for medical applications, Additive Manufacturing Materials, Processes, Quantifications and Applications, 261-309.
  • 92. Velu, R., Calais, T., Jayakumar, A., Raspall, F. A. (2020) Comprehensive review on bio-nanomaterials for medical implants and feasibility studies on fabrication of such implants by additive manufacturing technique, Materials, 13(1): 92. doi: 10.3390/ma13010092.
  • 93. Vukicevic, M., Mosadegh, B., Min, J.K., Little, S.H. (2017) Cardiac 3D printing and its future directions, JACC: Cardiovascular Imaging, 10(2): 171-184. doi: 10.1016/j.jcmg.2016.12.001.
  • 94. Wally, Z.J., Haque, A.M., Feteira, A., Claeyssens, F., Goodall, R., Reilly, G.C. (2019) Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications, Journal of Mechanical Behavior of Biomedical Materials, 90: 20-29. doi:10.1016/j.jmbbm.2018.08.047.
  • 95. Wang, X., Tan, L., Wang, X., Liu, W., Lu, Y., Cheng, L., Sun., Z. (2020) Comparison of nasopharyngeal and oropharyngeal swabs for SARS-CoV-2 detection in 353 patients received tests with both specimens simultaneously, International Journal of Infectious Diseases, 94: 107-109. doi:10.1016/j.ijid.2020.04.023.
  • 96. Xia, Z., Jin, S., Ye, K. (2018) Tissue and organ 3D bioprinting, SLAS Technology, 23(4): 301–314. doi: 10.1177/2472630318760515.
  • 97. Xie, Z., Gao, M., Lobo, A.O., Webster, T.J. (2020) 3D bioprinting in tissue engineering for medical applications: the classic and the hybrid, Polymers, 12(8):1717. doi: 10.3390/polym12081717.
  • 98. Yadav, D., Garg, R.K., Ahlawat, A., Chhabra, D. (2020) 3D printable biomaterials for orthopedic implants: solution for sustainable and circular economy, Resources Policy, 68. doi: 10.1016/j.resourpol.2020.101767.
  • 99. Yan, Q., Dong, H., Su, J., Han, J., Song, B., Wei, Q., Shi, Y. (2018) A review of 3D printing technology for medical applications, Engineering, 4(5): 729-742. doi:10.1016/j.eng.2018.07.021.
  • 100. YueJia, L., FengHua, Z., YanJu, L., JinSong, L. (2020) 4D printed shape memory polymers and their structures for biomedical applications, Science China Technological Sciences, 63: 545-560. doi:10.1007/s11431-019-1494-0.
  • 101. Zadpoor, A.A., Malda, J. (2017) Additive manufacturing of biomaterials, tissues, and organs, Annals of Biomedical Engineering, 45: 1-11. doi: 10.1007/s10439-016-1719-y.
  • 102. Zhang, B., Liu, S., Dong, Y., Zhang, L., Zhong, Q., Zou, Y., Zhang, S. (2020) Positive rectal swabs in young patients recovered from coronavirus disease 2019 (COVID-19), Journal of Infection, 81(2): 49-52. doi:10.1016/j.jinf.2020.04.023.

Additive Manufacturing Technologies in Biomedical Applications

Year 2022, Volume: 27 Issue: 1, 503 - 522, 30.04.2022
https://doi.org/10.17482/uumfd.991197

Abstract

Additive manufacturing (AM) technology, which is generally called three dimensional (3D) printing, has been used in many fields in recent years. With the introduction of technology, its cross-industry spread is increasing and is accelerating the development of the field of biofabrication in medicine. Recent advances in additive manufacturing are facilitating the further development of patient-specific healthcare solutions. Especially with regard to personalized treatment methods, production planning makes it preferable in healthcare applications. The customization of many healthcare products and services, such as implants, drug delivery devices, medical instruments, and prostheses, is extremely difficult, if not impossible, without additive manufacturing technologies. Today, additive manufacturing; is a well-known technology for making real three-dimensional objects using metal, ceramic, polymer materials, and biomaterials that can be subjected to a variety of applications. This article presents the medical applications of additive manufacturing, tissue and organ development with bioprinting technology, the range of materials in the medical field, and future research needs for this technology.

References

  • 1. Ahangar, P., Cooke, M.E., Weber, M.H., Rosenzweig, D.H. (2019) Current Biomedical applications of 3D printing and additive manufacturing, Applied Sciences, 9(8):1713. doi:10.3390/app9081713.
  • 2. Alalwan, N., Abozeid, A., ElHabshy, A.A., Alzahrani, A. (2021) Efficient 3D deep learning model for medical image semantic segmentation, Alexandria Engineering Journal, 60(1): 1231-1239. doi:10.1016/j.aej.2020.10.046.
  • 3. Ariz, A., Tasneem, I., Bharti, D., Vaish, A., Haleem, A., Javaid, M. (2021) Is additive manufacturing of patient specific implant beneficial for orthopedics, Apollo Medicine, 18(1): 33-40.
  • 4. Beliën, H., Biesmans, H., Steenwerck, A., Bijnens, E., Dierick, C. (2017) Prebending of osteosynthesis plate using 3D printed models to treat symptomatic os acromiale and acromial fracture, Journal of Experimental Orthopaedics, 4(1): 34. doi:10.1186/s40634-017-0111-7.
  • 5. Bhargav, A., Sanjairaj, V., Rosa, V., Feng, L.W., Yh, J.F. (2017) Applications of additive manufacturing in dentistry, Journal of Biomedical Materials Research B: Applied Biomaterials, 106(5):2058-2064. doi: 10.1002/jbm.b.33961.
  • 6. Biglino, G., Capelli, C., Binazzi, A., Reggiani, R., Cosentino, D., Migliavacca, F., Bonhoeffer, P., Taylor, A.M., Schievano, S. (2012) Virtual and real bench testing of a new percutaneous valve device: a case study, EuroIntervention, 8: 120-128. doi: 10.4244/EIJV8I1A19.
  • 7. Biswal, T., BadJena, S.K., Pradhan, D. (2020) Sustainable biomaterials and their applications, Materials Today: Proceedings, 30(2): 274-282. doi:10.1016/j.matpr.2020.01.437.
  • 8. Blaya, F., Pedro, P.S., Silva, J.L., Amato, R.D., Heras, E.S., Juanes, J.A. (2018) Design of an orthopedic product by using additive manufacturing technology: the arm splint, Journal of Medical Systems, 42(54).
  • 9. Bose, S., Ke, D., Sahasrabudhe, H., Bandyopadhyay, A. (2017) Additive manufacturing of biomaterials, Progress in Materials Science, 93: 45-111.
  • 10. Bozkurt, Y., Gülsoy, H.Ö, Karayel, E. (2021) Eklemeli imalat teknolojilerinin tıbbi ekipmanların üretiminde kullanımı, El-Cezerî Fen ve Mühendislik Dergisi, 8(2): 962-980. doi: 10.31202/ecjse.902023.
  • 11. Chen, C.K., Jin, Y., Wensman, J., Shih, A. (2016) Additive manufacturing of custom orthoses and prostheses, Additive Manufacturing: Part A, 12: 77-89. doi:10.1016/j.addma.2016.04.002.
  • 12. Choi, J., Kwon, O.C., Jo, W., Lee, H.J., Moon, M.W. (2015) 4D printing technology, 3D printing and additive manufacturing, 2(4): 159-167. doi:10.1089/3dp.2015.0039.
  • 13. Christ, P.F., Ettlinger, F., Grün, F., Elshaer, M.E.A., Lipkov, J., Schlecht, S., Ahmaddy, F., Tatavarty, S., Bickel, M., Bilic, P., Rempfler, M., Hofmann, F., Anastasi, M.D., Ahmadi, S.A., Kaissis, G., Holch, J., Sommer, W., Braren, R., Heinemann, V., Menze, B. (2017) Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks.
  • 14. Cleymand, F., Poerio, A., Mamanov, A., Elkhoury, K., Ikhelf, L., Jehl, J.P., Kahn, C.J.F., Ponçot, M., Tehrany, E.A., Mano, J.F. (2021) Development of novel chitosan/guar gum inks for extrusion-based 3D bioprinting: Process, printability and properties, Bioprinting, 21. doi:10.1016/j.bprint.2020.e00122.
  • 15. Cohen, D.L., Lipton, J.I., Bonassar, L.J., Lipson, H. (2010) Additive manufacturing for in situ repair of osteochondral defects, Biofabrication, 2(3). doi:10.1088/1758-5082/2/3/035004.
  • 16. Culmone, C., Smit, G., Breedveld P. (2019) Additive manufacturing of medical instruments, Additive Manufacturing, 27: 461-473.
  • 17. Çelik, İ., Karakoç, F., Çakır, M.C., Duysak, A. (2013) Hızlı prototipleme teknolojileri ve uygulama alanları, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31: 51- 70.
  • 18. Das, S., Pati, F., Choi, Y.J., Rijal, G., Shim, J.H., Kim, S.W., Ray, A.R., Cho, D.W., Ghosh, S. (2015) Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs, Acta Biomaterialia, 11: 233-46. doi: 10.1016/j.actbio.2014.09.023.
  • 19. Dawood, A., Marti, B., Sauret-Jackson, V., Darwood A. (2015) 3D printing in dentistry, British Dental Journal, 219(11):521-9. doi: 10.1038/sj.bdj.2015.914.
  • 20. Demircioğlu, P. (2018) Diş ve implant mikromorfolojik yapıların sinyal ve görüntü işleme yöntemleri ile değerlendirilmesi, El-Cezerî Fen ve Mühendislik Dergisi, 5(3): 741-748. doi:10.31202/ecjse.417791.
  • 21. Fangueiro, R., Carrilho, R., Antoniassi, L., Pina, P. (2009) Braided corrugated textile vascular prosthesis and process of producing same.
  • 22. Farooqi, K.M., Cooper, C., Chelliah, A., Saeed, O., Chai, P.J., Jambawalikar, S.R., Lipson, H., Bacha, E.A., Einstein, A.J., Jorde, U.P. (2019) 3D printing and heart failure: The Present and the Future, JACC: Heart Failure, 7(2): 132-142. doi:10.1016/j.jchf.2018.09.011.
  • 23. Frizziero, L., Liverani, A., Donnici, G., Osti, F., Neri, M., Maredi, E., Trisolino, G., Stilli, S. (2019) New methodology for diagnosis of orthopedic diseases through additive manufacturing models, Symmetry, 11(4):542. doi: 10.3390/sym11040542.
  • 24. Galante, R., Figueiredo-Pina, C.G., Serro, A.P. (2019) Additive manufacturing of ceramics for dental applications, Dental Materials, 35(6): 825-846. doi: 10.1016/j.dental.2019.02.026.
  • 25. Gee, A., Prager, R., Treece, G., Cash, C., Berman, L. (2004) Processing and visualizing three-dimensional ultrasound data, The British Journal of Radiology, 77:186-193. doi: 10.1259/bjr/80676194.
  • 26. Ghomi, E.R., Khosrav, F., Neisiany, R.E., Singh, S., Ramakrishna, S. (2021) Future of additive manufacturing in healthcare, Current Opinion in Biomedical Engineering, 17. doi:10.1016/j.cobme.2020.100255.
  • 27. Global 3D printing products and services market size from 2020 to 2026, (2021). Erişim Adresi: https://www.statista.com/statistics/315386/global-market-for-3d-printers/ (Erişim Tarihi: 12.02.2022)
  • 28. Guo, N., Leu, M.C. (2013) Additive manufacturing: technology, applications and research needs, Frontier in Mechanical Engineering, 8(3): 215-243. doi:10.1007/s11465-013-0248-8.
  • 29. Haleem, A., Javaid, M. (2020) 3D printed medical parts with different materials using additive manufacturing, Clinical Epidemiology and Global Health, 8(1):215-223. doi:/10.1016/j.cegh.2019.08.002.
  • 30. Haleem, A., Javaid, M., Saxena, A. (2018) Additive manufacturing applications in cardiology, The Egyptian Heart Journal, 70(4): 433-441. doi:/10.1016/j.ehj.2018.09.008.
  • 31. Harper, N.G., Russell, E.M., Wilken, J.M., Neptune, R.R. (2014) Selective laser sintered versus carbon fiber passive-dynamic ankle-foot orthoses: a comparison of patient walking performance, Journal of Biomechanical Engineering, 136(9). doi: 10.1115/1.4027755.
  • 32. Hazeveld, A., Slater, J.J.R.H., Ren, Y. (2014) Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques, American Journal of Orthodontics and Dentofacial Orthopedics, 145: 108-115. doi: 10.1016/j.ajodo.2013.05.011.
  • 33. Herbert, N., Simpson, D., Spence, W.D., Iyon, W. (2015) A preliminary investigation into the development of 3-D printing of prosthetic sockets, Journal of Rehabilitation Research and Devolopment (JRRD), 42(2): 141-146. doi:10.1682/JRRD.2004.08.0134.
  • 34. Huang, Z., Zhang, L., Zhu, J., Zhang, X. (2015) Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology, The Journal of Prosthetic Dentistry, 113: 623-7. doi: 10.1016/j.prosdent.2014.10.012.
  • 35. Huotilainen, E., Paloheimo, M., Salmi, M., Paloheimo, K.S., Bjoürkstrand, R., Tuomi, J., Markkola, A., Maükitie, A. (2014) Imaging requirements for medical applications of additive manufacturing, Acta Radiologica, 55(1): 78-85. doi: 10.1177/0284185113494198.
  • 36. Javaid, M., Haleem, A. (2018) 4D printing applications in medical field, Clinical Epidemiology and Global Health, 7(3): 317-321. doi:/10.1016/j.cegh.2018.09.007.
  • 37. Javaid, M., Haleem, A. (2018) Additive manufacturing applications in orthopaedics, Journal of Clinical Orthopaedics and Trauma, 9(3): 202-206. doi:10.1016/j.jcot.2018.04.008.
  • 38. Javaid, M., Haleem, A. (2018) Additive manufacturing applications in medical cases, Alexandria Journal of Medicine, 54(4): 411-422. doi:10.1016/j.ajme.2017.09.003.
  • 39. Javaid, M., Haleem, A. (2019) Industry 4.0 applications in medical field, Current Medicine Research and Practice, 9(3): 102-109. doi:10.1016/j.cmrp.2019.04.001.
  • 40. Javaid, M., Haleem, A. (2019) Current status and applications of additive manufacturing in dentistry, Journal of Oral Biology and Craniofacial Research, 9(3):179-185. doi: 10.1016/j.jobcr.2019.04.004.
  • 41. Javaid, M., Haleem, A. (2020) 3D printed tissue and organ using additive manufacturing: an overview, Clinical Epidemiology and Global Health, 8(2): 586-594. doi:10.1016/j.cegh.2019.12.008.
  • 42. Karasu, B., Karabulut, D., Biçer, A., Varol, U.C., Oytaç, Z.E. (2019) Seramik sektöründe ink-jet dekorasyon uygulamaları, El-Cezerî Fen ve Mühendislik Dergisi, 6(3): 691-711. doi:10.31202/ecjse.572176.
  • 43. Kim, H. R., Jang, S., Kim, Y. K., Son, J. S., Min, B. K., Kim, K., Kwon T. (2016) Microstructures and mechanical properties of Co-Cr dental alloys fabricated by three CAD/CAM-based processing techniques. Materials, 9(7):1-14. doi:10.3390/ma9070596.
  • 44. Kumar, R., Kumar, M., Chohan, J.S. (2021) The role of additive manufacturing for biomedical applications: A critical review, Journal of Manufacturing Processes, 64: 828-850. doi: 10.1016/j.jmapro.2021.02.022.
  • 45. Lal, H., Patralekh, M.H. (2018) 3D printing and its applications in orthopaedic trauma: a technological marve, Journal of Clinical Orthopaedics and Trauma, 9(3): 260-268. doi: 10.1016/j.jcot.2018.07.022.
  • 46. Lee, V.K., Dias, A., Ozturk, M.S., Chen, K., Tricomi, B., Corr, D.T., Intes, X., Dai, G. (2015) 3D Bioprinting and 3D Imaging for Stem Cell Engineering, In: Turksen K. (eds) Bioprinting in Regenerative Medicine, Stem Cell Biology and Regenerative Medicine, Springer, 33-66. doi:10.1007/978-3-319-21386-6_2.
  • 47. Li, C., Psignano, D., Zhao, Y., Xue, j. (2020) Advances in medical applications of additive manufacturing, engineering, 6(11): 1222-1231. doi:10.1016/J.ENG.2020.02.018.
  • 48. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A. (2018) H-denseunet: hybrid densely connected unet for liver and tumor segmentation from CT volumes, IEEE Transactions on Medical Imaging. doi: 10.1109/TMI.2018.2845918.
  • 49. Liu, G., Zhang, X., Chen, X., He, Y., Cheng, L., Huo, M., Yin, J., Hao, F., Chen, S., Wang, P., Yi, S., Wan, L., Mao, Z., Chen, Z., Wang, X., Cao, Z., Lua, J. (2021) Additive manufacturing of structural materials, Materials Science and Engineering: R: Reports. doi:/10.1016/j.mser.2020.100596.
  • 50. Liu, N., Ye, X., Yao, B., Zhao, M., Wu, P., Liu, G., Zhuang, D., Jiang, H., Chen, X., He, Y., Huang, S., Shu, P. (2021) Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration, Bioactive Materials, 6(5): 1388-1401. doi:10.1016/j.bioactmat.2020.10.021.
  • 51. Luo, H., Szary, J.M., Wang, Z., Sabiniewicz, R., Liu, Y. (2017) Three-dimensional printing in cardiology: current applications and future challenges, Cardiology Journal, 24(4): 436-444. doi: 10.5603/CJ.a2017.0056.
  • 52. Matai, I., Kau, G., Seyedsalehi, A., McClinton, A., Laurencin, C.T. (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering, Biomaterials, 226. doi: 10.1016/j.biomaterials.2019.119536.
  • 53. Methani, M.M., Cesar, P.F., Miranda, R.B. de P., Morimoto, S., Özcan, M., Revilla-León, M. (2020) Additive manufacturing in dentistry: current technologies, clinical applications, and limitations, Current Oral Health Reports, 7: 327-334. doi:10.1007/s40496-020-00288-w.
  • 54. Mok, S.W., Nizak, R., Fu, S.C., Ho, K.W.K., Qin, L., Saris, D., Chan, K.M., Malda, J. (2016) From the printer: potential of three dimensional printing for orthopaedic applications, Journal of Orthopaedic Translation, 6: 42-49. doi:10.1016/j.jot.2016.04.003.
  • 55. Molnár, I., Morovič, L. (2018) Design and manufacture of orthopedic corset using 3D digitization and additive manufacturing, IOP Conferance Series: Materials Science and Engineering, XXIII International Conference on Manufacturing (Manufacturing 2018), 448. doi:10.1088/1757-899X/448/1/012058.
  • 56. Mota, C., Puppi, D., Chiellini, F., Chiellini, E. (2012) Additive manufacturing techniques for the production of tissue engineering constructs, Journal of Tissue Engineering and Regenerative Medicine. doi: 10.1002/term.1635.
  • 57. Munir, K., Biesiekierski, A., Wen, C., Li, Y. (2020) Introduction to biomedical manufacturing, Metallic Biomaterials Processing and Medical Device Manufacturing, 3-29. doi:10.1016/B978-0-08-102965-7.00001-1.
  • 58. Nadagouda, M.N., Rastogi, V., Ginn, M. (2020) A review on 3D printing techniques for medical application, 28: 152-157. doi:10.1016/j.coche.2020.05.007.
  • 59. Narushima, T. (2019) New-generation metallic biomaterials, Metals for Biomedical Devices (Second Edition), Woodhead Publishing Series in Biomaterials, 495-521. doi:10.1533/9781845699246.4.355.
  • 60. Nematollahi, M., Jahadakbar, A., Mahtabi, M.J., Elahinia, M. (2019) Additive manufacturing (AM), Metals for Biomedical Devices (Second Edition), Woodhead Publishing Series in Biomaterials, 331-353. doi:10.1016/B978-0-08-102666-3.00012-2.
  • 61. Noecker, A.M., Kopcak, M.W., White, R.D., Duncan, B.W. (2005) Creating three dimensional patient-specific models of pediatric hearts, ASAIO Journal, 51(2):16A.
  • 62. Osman, R.B., Veen, A.J., Huiberts, D., Wismeijer, D., Alharbi, N. (2017) 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs, Journal of the Mechanical Behavior of Biomedical Materials, 75: 521-528. doi: 10.1016/j.jmbbm.2017.08.018.
  • 63. Özbolat, İ., Yu, Y. (2013) Bioprinting towards organ fabrication: challenges and future trends”, IEEE Transactions on Biomedical Engineering, 60(3): 691-699. doi: 10.1109/TBME.2013.2243912, Epub 2013 Jan 30. PMID: 23372076.
  • 64. Öziç, M.Ü., Özşen, S. (2020) 3B Alzheimer MR görüntülerinin hacimsel kayıp bölgelerindeki voksel değerleri kullanarak sınıflandırılması, El-Cezerî Fen ve Mühendislik Dergisi, 7(3): 1152-1166. doi:10.31202/ecjse.728049.
  • 65. Palousek, D., Rosicky, J., Koutny, D., Stoklásek, P., & Navrat, T. (2014) Pilot study of the wrist orthosis design process, Rapid Prototyping Journal, 20(1): 27-33. doi: 10.1108/RPJ-03-2012-0027.
  • 66. Patel, P., Golhi, P. (2021) Role of additive manufacturing in medical application COVID-19 scenario: India case study, Journal of Manufacturing Systems, 60: 811-822. doi:10.1016/j.jmsy.2020.11.006.
  • 67. Patzelt, S.B.M., Bishti, S., Stampf, S., Att, W. (2014) Accuracy of computer-aided design/computer-aided manufacturing–generated dental casts based on intraoral scanner data, The Journal of the American Dental Associationc, 145: 1133-1140. doi: 10.14219/jada.2014.87.
  • 68. Rebelo, R., Fernandes, M., Fangueiro, R. (2017) Biopolymers in medical implants, Procedia Engineering, 3rd International Conference on Natural Fibers: Advanced Materials for a Greener World, 200: 236-243. doi:10.1016/j.proeng.2017.07.034.
  • 69. Revilla-León, M., Özcan, M. (2017) Additive manufacturing technologies used for 3D Metal printing in dentistry, Current Oral Health Reports, 4: 201-208. doi:10.1007/s40496-017-0152-0.
  • 70. Revilla-León, M., Sadeghpour, M., Özcan, M. (2020) A review of the applications of additive manufacturing technologies used to fabricate metals in ımplant dentistry, Journal of Prosthodontics, 29(7): 579-593. doi: 10.1111/jopr.13212.
  • 71. Riza, S.H., Masood, S.H., Rashid, R.A.R., Chandra, S. (2020) Selective laser sintering in biomedical manufacturing, Metallic Biomaterials Processing and Medical Device Manufacturing, Woodhead Publishing Series in Biomaterials, 193-233. doi:/10.1016/B978-0-08-102965-7.00006-0.
  • 72. Saheb, S.H., Kumar, J.V. (2020) A comprehensive review on additive manufacturing applications, Third International Conference on Inventive Material Science Applications, AIP Conference Proceedings, 2281. doi:10.3844/ajassp.2019.244.272.
  • 73. Salmi, M. (2021) Additive manufacturing processes in medical applications, Materials, 14. doi:10.3390/ma14010191
  • 74. Salmi, M., Paloheimo, K.S., Tuomi, J., Wolff, J., Mäkitie, S. (2013) Accuracy of medical models made by additive manufacturing (rapid manufacturing), Journal of Cranio-Maxillo-Facial Surgery, 41: 603-609. doi: 10.1016/j.jcms.2012.11.041.
  • 75. Sanadhya, S., Vij, N., Chaturvedi, P., Tiwari, S., Arora, B., Modi, Y. K. (2015) Medical applications of additive manufacturing, International Journal of Scientific Progress and Research (IJSPR), 12.
  • 76. Sheoran, A.J., Kumar, H., Arora, P.K., Moona, G. (2020) Bio-medical applications of additive manufacturing, Procedia Manufacturing, 51: 663-670. doi:/10.1016/j.promfg.2020.10.093.
  • 77. Shuai, C., Gao, C., Nie, Y., Hu, H., Zhou, Y., Peng, S. (2011) Structure and properties of nano hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system, Nanotechnology, 22: 285703. doi: 10.1088/0957-4484/22/28/285703.
  • 78. Singh, A.V., Ansari, M.H.D., Wang, S., Laux, P., Luch, A., Kumar, A., Patil, R., Nussberger, S. (2019) The adoption of three-dimensional additive manufacturing from biomedical material design to 3D organ printing, Applied Science, 9(4). doi:10.3390/app9040811.
  • 79. Singh, S., Ramakrishna, S., Singh, R. (2017) Material issues in additive manufacturing, Journal of Manufacturing Processes, 25: 185-200. doi:10.1016/j.jmapro.2016.11.006.
  • 80. Sinha, S.K. (2020) Additive manufacturing (AM) of medical devices and scaffolds for tissue engineering based on 3D and 4D printing”, 3D and 4D printing of polymer nanocomposite materials, processes, Applications, and Challenges, 119-160. doi:10.1016/b978-0-12-816805-9.00005-3.
  • 81. Stanco, D., Urban, P., Tirendi, S., Ciardelli, G., Barrero, J. (2020) 3D bioprinting for orthopaedic applications: Current advances, challenges and regulatory considerations, Bioprinting, 20. doi:10.1016/j.bprint.2020.e00103.
  • 82. Sun, H., Jia, Y., Dong, H., Dong, D., Zheng, J. (2020) Combining additive manufacturing with microfluidics: an emerging method for developing novel organs-on-chips, Current Opinion in Chemical Engineering, 28: 1-9. doi: 10.1016/j.coche.2019.10.006.
  • 83. Şahin, İ., Sarı, İ.M., Şahin, T. (2018) Hızlı prototipleme yaklaşımı ile ortez üretimi: kaynak araştırması, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 6(1): 27-39. doi: 10.29130/dubited.307201.
  • 84. Thwe, P.M., Ren, P. (2020) How many are we missing with ID NOW COVID-19 assay using direct nasopharyngeal swabs? Findings from a mid-sized academic hospital clinical microbiology laboratory, Diagnostic Microbiology and Infectious Disease, 98(2). doi:10.1016/j.diagmicrobio.2020.115123.
  • 85. Tripathi, S., Manoria, A., Agrawal, P. (2020) Additive manufacturing applications in medical field like cardiology and dentistry, EasyChair.
  • 86. Trivedi, M., Jee, J., Silva, S., Blomgren, C., Pontinha, V.M., Dixon, D.L., Tassel, B.V., Bortner, B.J., Williams, C., Gilmer, E., Haring, A.P., Halper, J., Johnson, B.N., Kong, Z., Halquist, M.S., Rocheleau, P.F., Long, T.E., Roper, T., Wijesinghe, D.S.(2018) Additive manufacturing of pharmaceuticals for precision medicine applications: A review of the promises and perils in implementation, 23: 319-328.
  • 87. Tuomi, J., Paloheimo, K.S., Vehviläinen, J., Björkstrand, R., Salmi, M., Huotilainen, E., Kontio, R., Rouse, S., Gibson, I., Mäkitie, A.A. (2014) A novel classification and online platform for planning and documentation of medical applications of additive manufacturing, Surgical Innovation, 21(6): 553-559. doi: 10.1177/1553350614524838.
  • 88. Uygunoğlu, T., Özgüven, S.,B. (2021) 3D yazıcılar için tasarlanan harçlarının ekstrüde edilebilirlikleri, El-Cezerî Fen ve Mühendislik Dergisi, 8(1):410-420. doi:/10.31202/ecjse.852736.
  • 89. Vaish, A., Vaish, R. (2018) 3D printing and its applications in orthopedics, Journal of Clinical Orthopaedics and Trauma, 9(1): 74-75. doi: 10.1016/j.jcot.2018.02.003.
  • 90. Valverde, I. (2017) Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions, Revista Española de Cardiología, 70(4): 282-291. doi: 10.1016/j.rec.2017.01.012.
  • 91. Vanmeensel, K., Lietaert, K., Vrancken, B., Dadbakhsh, S., Li, X., Kruth, J.P., Krakhmalev, P., Yadroitsev, I., Humbeeck, J.V. (2018) Additively manufactured metals for medical applications, Additive Manufacturing Materials, Processes, Quantifications and Applications, 261-309.
  • 92. Velu, R., Calais, T., Jayakumar, A., Raspall, F. A. (2020) Comprehensive review on bio-nanomaterials for medical implants and feasibility studies on fabrication of such implants by additive manufacturing technique, Materials, 13(1): 92. doi: 10.3390/ma13010092.
  • 93. Vukicevic, M., Mosadegh, B., Min, J.K., Little, S.H. (2017) Cardiac 3D printing and its future directions, JACC: Cardiovascular Imaging, 10(2): 171-184. doi: 10.1016/j.jcmg.2016.12.001.
  • 94. Wally, Z.J., Haque, A.M., Feteira, A., Claeyssens, F., Goodall, R., Reilly, G.C. (2019) Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications, Journal of Mechanical Behavior of Biomedical Materials, 90: 20-29. doi:10.1016/j.jmbbm.2018.08.047.
  • 95. Wang, X., Tan, L., Wang, X., Liu, W., Lu, Y., Cheng, L., Sun., Z. (2020) Comparison of nasopharyngeal and oropharyngeal swabs for SARS-CoV-2 detection in 353 patients received tests with both specimens simultaneously, International Journal of Infectious Diseases, 94: 107-109. doi:10.1016/j.ijid.2020.04.023.
  • 96. Xia, Z., Jin, S., Ye, K. (2018) Tissue and organ 3D bioprinting, SLAS Technology, 23(4): 301–314. doi: 10.1177/2472630318760515.
  • 97. Xie, Z., Gao, M., Lobo, A.O., Webster, T.J. (2020) 3D bioprinting in tissue engineering for medical applications: the classic and the hybrid, Polymers, 12(8):1717. doi: 10.3390/polym12081717.
  • 98. Yadav, D., Garg, R.K., Ahlawat, A., Chhabra, D. (2020) 3D printable biomaterials for orthopedic implants: solution for sustainable and circular economy, Resources Policy, 68. doi: 10.1016/j.resourpol.2020.101767.
  • 99. Yan, Q., Dong, H., Su, J., Han, J., Song, B., Wei, Q., Shi, Y. (2018) A review of 3D printing technology for medical applications, Engineering, 4(5): 729-742. doi:10.1016/j.eng.2018.07.021.
  • 100. YueJia, L., FengHua, Z., YanJu, L., JinSong, L. (2020) 4D printed shape memory polymers and their structures for biomedical applications, Science China Technological Sciences, 63: 545-560. doi:10.1007/s11431-019-1494-0.
  • 101. Zadpoor, A.A., Malda, J. (2017) Additive manufacturing of biomaterials, tissues, and organs, Annals of Biomedical Engineering, 45: 1-11. doi: 10.1007/s10439-016-1719-y.
  • 102. Zhang, B., Liu, S., Dong, Y., Zhang, L., Zhong, Q., Zou, Y., Zhang, S. (2020) Positive rectal swabs in young patients recovered from coronavirus disease 2019 (COVID-19), Journal of Infection, 81(2): 49-52. doi:10.1016/j.jinf.2020.04.023.
There are 102 citations in total.

Details

Primary Language Turkish
Subjects Composite and Hybrid Materials, Materials Engineering (Other)
Journal Section Survey Articles
Authors

Kübra Sıvacı 0000-0002-0352-2264

Elif Ecem Özgüvenç 0000-0001-5169-1444

Yahya Bozkurt 0000-0003-1816-5922

Publication Date April 30, 2022
Submission Date September 4, 2021
Acceptance Date March 7, 2022
Published in Issue Year 2022 Volume: 27 Issue: 1

Cite

APA Sıvacı, K., Özgüvenç, E. E., & Bozkurt, Y. (2022). BİYOMEDİKAL UYGULAMALARINDA EKLEMELİ İMALAT TEKNOLOJİLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 503-522. https://doi.org/10.17482/uumfd.991197
AMA Sıvacı K, Özgüvenç EE, Bozkurt Y. BİYOMEDİKAL UYGULAMALARINDA EKLEMELİ İMALAT TEKNOLOJİLERİ. UUJFE. April 2022;27(1):503-522. doi:10.17482/uumfd.991197
Chicago Sıvacı, Kübra, Elif Ecem Özgüvenç, and Yahya Bozkurt. “BİYOMEDİKAL UYGULAMALARINDA EKLEMELİ İMALAT TEKNOLOJİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, no. 1 (April 2022): 503-22. https://doi.org/10.17482/uumfd.991197.
EndNote Sıvacı K, Özgüvenç EE, Bozkurt Y (April 1, 2022) BİYOMEDİKAL UYGULAMALARINDA EKLEMELİ İMALAT TEKNOLOJİLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 1 503–522.
IEEE K. Sıvacı, E. E. Özgüvenç, and Y. Bozkurt, “BİYOMEDİKAL UYGULAMALARINDA EKLEMELİ İMALAT TEKNOLOJİLERİ”, UUJFE, vol. 27, no. 1, pp. 503–522, 2022, doi: 10.17482/uumfd.991197.
ISNAD Sıvacı, Kübra et al. “BİYOMEDİKAL UYGULAMALARINDA EKLEMELİ İMALAT TEKNOLOJİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/1 (April 2022), 503-522. https://doi.org/10.17482/uumfd.991197.
JAMA Sıvacı K, Özgüvenç EE, Bozkurt Y. BİYOMEDİKAL UYGULAMALARINDA EKLEMELİ İMALAT TEKNOLOJİLERİ. UUJFE. 2022;27:503–522.
MLA Sıvacı, Kübra et al. “BİYOMEDİKAL UYGULAMALARINDA EKLEMELİ İMALAT TEKNOLOJİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 27, no. 1, 2022, pp. 503-22, doi:10.17482/uumfd.991197.
Vancouver Sıvacı K, Özgüvenç EE, Bozkurt Y. BİYOMEDİKAL UYGULAMALARINDA EKLEMELİ İMALAT TEKNOLOJİLERİ. UUJFE. 2022;27(1):503-22.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.