Research Article
BibTex RIS Cite

DEVELOPMENT OF MNO2/PANI/SWCNT NANOCOMPOSITE SUPERCAPACITOR ELECTRODE AND INVESTIGATION OF ELECTROCHEMICAL PERFORMANCE

Year 2023, Volume: 28 Issue: 3, 887 - 904, 27.12.2023
https://doi.org/10.17482/uumfd.1290797

Abstract

In this study, a manganese dioxide (MnO2/polyaniline (PANI)/ single-walled carbon nanotube (SWCNT) nanocomposite electrode was prepared for pseudo-supercapacitors. To reduce the internal resistance of the electrode, increase the capacitance stability, and reduce the cost of single-walled carbon nanotubes, SWCNT was subjected to two-step acid etching. The purity of SWCNT was improved from ~95% to 99.98%. In addition, SWCNT was functionalized by this process. Thus, a nanocomposite was formed by coating PANI around SWCNT. MnO2/PANI/SWCNT were synthesized using the hydrothermal method. Morphological, chemical and thermal analyses of the synthesized nanocomposite structure were carried out. In addition, X-ray diffraction (XRD) was used to determine the crystal structure. Electrochemical analyses were performed using a three-electrode system in a 1 M KOH electrolyte solution. Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurements were performed. The capacitance of the nanocomposite electrode at 400 cycles was
314 mF/cm2, and the capacitance retention stability was calculated at 73.24%. The results showed that the capacitance stability was high, and the supercapacitor was sensitive to redox reactions.

Project Number

FOA-2021-681 ve TÜBİTAK 1002-B 122M934

References

  • 1. Chen, Wei (2013) MnO2 Based Nanostructures for Supercapacitor Energy Storage Applications. Doctor of Philosophy.
  • 2. Dong, Liubing; Xu, Chengjun; Li, Yang; Pan, Zhengze; Liang, Gemeng; Zhou, Enlou et al. (2016) Breathable and Wearable Energy Storage Based on Highly Flexible Paper Electrodes. In Advanced materials (Deerfield Beach, Fla.) 28 (42), pp. 9313–9319. doi: 10.1002/adma.201602541.
  • 3. Dutta, Shibsankar; Pal, Shreyasi; De, Sukanta (2018) Few-layered MnO2/SWCNT hybrid in-plane supercapacitor with high energy density. In. 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Bikaner, India, 24–25 November 2017: Author(s) (AIP Conference Proceedings), p. 30145.
  • 4. Elnaggar, Elsayed M.; Kabel, Khalid I.; Farag, Ahmed A.; Al-Gamal, Abdalrhman G. (2017) Comparative study on doping of polyaniline with graphene and multi-walled carbon nanotubes. In J Nanostruct Chem 7 (1), pp. 75–83. doi: 10.1007/s40097-017-0217-6.
  • 5. Gupta, Vinay; Kumar, S. (2019) MnO2/SWCNT buckypaper for high performance supercapacitors. In Journal of Energy Storage 26, p. 100960. doi: 10.1016/j.est.2019.100960.
  • 6. Gupta, Vinay; Miura, Norio (2006) Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. In Electrochimica Acta 52 (4), pp. 1721–1726. doi: 10.1016/j.electacta.2006.01.074.
  • 7. Hashmi, Safir Ahmad; Yadav, Nitish; Singh, Manoj Kumar (2020) Polymer Electrolytes for Supercapacitor and Challenges. In Tan Winie, Abdul K. Arof, Sabu Thomas (Eds.): Polymer Electrolytes: Wiley, pp. 231– 297.
  • 8. Himi, M. Ait; Sghiouri, A.; Youbi, B.; Lghazi, Y.; Amarray, A.; Aqil, M. et al. (2023) Effect of applied potential on supercapacitor performances of manganese oxide nanomaterials electrodeposited on indium tin oxide substrate. In Journal of Energy Storage 61, p. 106711. doi: 10.1016/j.est.2023.106711.
  • 9. Huang, Yingying; Lu, Jinlin; Kang, Shumei; Weng, Duo; Han, Lu; Wang, Yongfei (2019) Synthesis and Application of MnO2/PANI/MWCNT Ternary Nanocomposite as an Electrode Material for Supercapacitors. In International Journal of Electrochemical Science 14 (9), pp. 9298–9310. doi: 10.20964/2019.09.86.
  • 10. IBRAHIM, H.; Ilınca, A.; PERRON, J. (2008) Energy storage systems—Characteristics and comparisons. In Renewable and Sustainable Energy Reviews 12 (5), pp. 1221–1250. doi: 10.1016/j.rser.2007.01.023.
  • 11. Iqbal, Javed; Ansari, Mohammad Omaish; Numan, Arshid; Wageh, S.; Al-Ghamdi, Ahmed; Alam, Mohd Gulfam et al. (2020) Hydrothermally Assisted Synthesis of Porous Polyaniline@Carbon Nanotubes- Manganese Dioxide Ternary Composite for Potential Application in Supercapattery. In Polymers 12 (12). doi: 10.3390/polym12122918.
  • 12. Islam, Rakibul; Papathanassiou, Anthony N.; Chan-Yu-King, Roch; Gors, Carole; Roussel, Frédérick (2020) Competing charge trapping and percolation in core-shell single wall carbon nanotubes/ polyaniline nanostructured composites. In Synthetic Metals 259, p. 116259. doi: 10.1016/j.synthmet.2019.116259.
  • 13. Kaushal, Indu; Sharma, Ashok K.; Saharan, Priya; Sadasivuni, Kishor Kumar; Duhan, Surender (2019) Superior architecture and electrochemical performance of MnO2 doped PANI/CNT graphene fastened composite. In J Porous Mater 26 (5), pp. 1287–1296. doi: 10.1007/s10934-019-00728-8.
  • 14. Li, Yu; Zhang, Xiaobin; Luo, Junhang; Huang, Wanzhen; Cheng, Jipeng; Luo, Zhiqiang et al. (2004) Purification of CVD synthesized single-wall carbon nanotubes by different acid oxidation treatments. In Nanotechnology 15 (11), pp. 1645–1649. doi: 10.1088/0957-4484/15/11/047.
  • 15. Liu, Wenjie; Wang, Shishuang; Wu, Qianhui; Huan, Long; Zhang, Xiue; Yao, Chao; Chen, Ming (2016) Fabrication of ternary hierarchical nanofibers MnO2/PANI/CNT and theirs application in electrochemical supercapacitors. In Chemical Engineering Science 156, pp. 178–185. doi: 10.1016/j.ces.2016.09.025.
  • 16. Mazloomian, Katrina; Lancaster, Hector J.; Howard, Christopher A.; Shearing, Paul R.; Miller, Thomas S. (2023) Supercapacitor Degradation: Understanding Mechanisms of Cycling‐Induced Deterioration and Failure of a Pseudocapacitor. In Batteries & Supercaps 6 (8), Article e202300214. doi: 10.1002/batt.202300214.
  • 17. Sankar, A.; Chitra, S. Valli; Jayashree, M.; Parthibavarman, M.; Amirthavarshini, T. (2022) NiO nanoparticles/graphene nanocomposite as high-performance pseudocapacitor electrodes: Design and implementation. In Diamond and Related Materials 122, p. 108804. doi: 10.1016/j.diamond.2021.108804.
  • 18. Sharma, Ashok K.; Sharma, Yashpal (2013) p-toluene sulfonic acid doped polyaniline carbon nanotube composites: synthesis via different routes and modified properties. In J. Electrochem. Sci. Eng. doi: 10.5599/jese.2013.0029.
  • 19. Shi, Chenglong; Sun, Junlong; Pang, Youyong; Liu, YongPing; Huang, Bin; Liu, Bo-Tian (2022) A new potassium dual-ion hybrid supercapacitor based on battery-type Ni(OH)2 nanotube arrays and pseudocapacitor-type V2O5-anchored carbon nanotubes electrodes. In Journal of colloid and interface science 607 (Pt 1), pp. 462–469. doi: 10.1016/j.jcis.2021.09.011.
  • 20. Tian, Menghan; Liu, Xueqing; Diao, Xungang; Zhong, Xiaolan (2023) High performance PANI/MnO2 coral-like nanocomposite anode for flexible and robust electrochromic energy storage device. In Solar Energy Materials and Solar Cells 253, p. 112239. doi: 10.1016/j.solmat.2023.112239.
  • 21. Wu, Huatao; La, Ming; Li, JinHui; Han, Yongjun; Feng, Yunxiao; Peng, Qinlong; Hao, Chengjun (2019) Preparation and electrochemical properties of MnO 2 /PANI-CNTs composites materials. In Composite Interfaces 26 (8), pp. 659–677. doi: 10.1080/09276440.2018.1526592.
  • 22. Yakymchuk, Olena M.; Perepelytsina, Olena M.; Dobrydnev, Alexey V.; Sydorenko, Mychailo V. (2015) Effect of single-walled carbon nanotubes on tumor cells viability and formation of multicellular tumor spheroids. In Nanoscale research letters 10, p. 150. doi: 10.1186/s11671-015-0858-7.
  • 23. Yuksel, Recep; Unalan, Husnu Emrah (2015) Textile supercapacitors-based on MnO 2 /SWNT/conducting polymer ternary composites. In Int. J. Energy Res. 39 (15), pp. 2042–2052. doi: 10.1002/er.3439.
  • 24. Zhang, Qun-Zheng; Zhang, Dian; Miao, Zong-Cheng; Zhang, Xun-Li; Chou, Shu-Lei (2018) Research Progress in MnO2 -Carbon Based Supercapacitor Electrode Materials. In Small (Weinheim an der Bergstrasse, Germany) 14 (24), e1702883. doi: 10.1002/smll.201702883.
  • 25. Zhou, Lei; Li, Chunyang; Liu, Xiang; Zhu, Yusong; Wu, Yuping; van Ree, Teunis (2018) Metal oxides in supercapacitors. In : Metal Oxides in Energy Technologies: Elsevier, pp. 169–203.

MnO2/PANI/SWCNT Nanokompozit Süperkapasitör Elektrot Geliştirilmesi ve Elektrokimyasal Performansının İncelenmesi

Year 2023, Volume: 28 Issue: 3, 887 - 904, 27.12.2023
https://doi.org/10.17482/uumfd.1290797

Abstract

Bu makale çalışmasında psedo-süperkapasitörler için mangan dioksit (MnO2)/ polianilin (PANI)/ tek duvarlı karbon nanotüp (SWCNT) nanokompozit elektrot hazırlanmıştır. Elektrotun iç direcini azaltmak, kapasitans stabilitesini arttırmak ve tek duvarlı karbon nanotüp maliyetini azaltmak için SWCNT iki aşamalı asitle aşındırma çalışması yapılmıştır. SWCNT ~%95 saflıktan %99,98 saflığa ulaştırılmıştır. Ayrıca bu işlemle SWCNT fonksiyonelleştirilmiştir. Böylece SWCNT çevresine PANI kaplanarak nanokompozit oluşturulmuştur. Hidrotermal yöntem ile MnO2/PANI/SWCNT sentezlenmiştir. Sentezlenen nanokompozit yapının morfojik, kimyasal ve termal analizleri gerçekleştirilmiştir. Bununla birlikte kristal yapı tayini için X ışını difraksiyometresi (XRD) kullanılmıştır. Elektrokimyasal analizler üçlü elektrot sistemiyle 1 M KOH elektrolit çözeltisinde yapılmıştır. Döngüsel voltametri (CV), galvanostatik şarj-deşarj (GCD) ölçümleri alınmıştır. Nanokompozit elektrodun 400 döngüde kapasitansı 314 mF/cm2 olarak bulunmuş kapasite tutma kararlılığı ise %73,24 olarak hesaplanmıştır. Yapılan çalışma sonucunda kapasitans kararlılığının yüksek olduğu ve süperkapasitörün redoks tepkimelerine duyarlı olduğu gözlemlenmiştir.

Supporting Institution

Bursa Uludağ Üniversitesi ve TÜBİTAK

Project Number

FOA-2021-681 ve TÜBİTAK 1002-B 122M934

Thanks

Bu makale çalışmasında Bursa Uludağ Üniversitesi BAP Birimi FOA-2021-681 proje koduyla ve TÜBİTAK 1002-B 122M934 proje koduyla desteklenmiştir. Ayrıca yazarlardan Çağatay ÖZADA, YÖK 100/2000 Doktora burs ve TÜBİTAK 2211/C Doktora burs programları tarafından desteklenmektedir. Yazarlardan Merve ÜNAL YÖK 100/2000 doktora burs programı tarafından desteklenmiştir.

References

  • 1. Chen, Wei (2013) MnO2 Based Nanostructures for Supercapacitor Energy Storage Applications. Doctor of Philosophy.
  • 2. Dong, Liubing; Xu, Chengjun; Li, Yang; Pan, Zhengze; Liang, Gemeng; Zhou, Enlou et al. (2016) Breathable and Wearable Energy Storage Based on Highly Flexible Paper Electrodes. In Advanced materials (Deerfield Beach, Fla.) 28 (42), pp. 9313–9319. doi: 10.1002/adma.201602541.
  • 3. Dutta, Shibsankar; Pal, Shreyasi; De, Sukanta (2018) Few-layered MnO2/SWCNT hybrid in-plane supercapacitor with high energy density. In. 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Bikaner, India, 24–25 November 2017: Author(s) (AIP Conference Proceedings), p. 30145.
  • 4. Elnaggar, Elsayed M.; Kabel, Khalid I.; Farag, Ahmed A.; Al-Gamal, Abdalrhman G. (2017) Comparative study on doping of polyaniline with graphene and multi-walled carbon nanotubes. In J Nanostruct Chem 7 (1), pp. 75–83. doi: 10.1007/s40097-017-0217-6.
  • 5. Gupta, Vinay; Kumar, S. (2019) MnO2/SWCNT buckypaper for high performance supercapacitors. In Journal of Energy Storage 26, p. 100960. doi: 10.1016/j.est.2019.100960.
  • 6. Gupta, Vinay; Miura, Norio (2006) Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. In Electrochimica Acta 52 (4), pp. 1721–1726. doi: 10.1016/j.electacta.2006.01.074.
  • 7. Hashmi, Safir Ahmad; Yadav, Nitish; Singh, Manoj Kumar (2020) Polymer Electrolytes for Supercapacitor and Challenges. In Tan Winie, Abdul K. Arof, Sabu Thomas (Eds.): Polymer Electrolytes: Wiley, pp. 231– 297.
  • 8. Himi, M. Ait; Sghiouri, A.; Youbi, B.; Lghazi, Y.; Amarray, A.; Aqil, M. et al. (2023) Effect of applied potential on supercapacitor performances of manganese oxide nanomaterials electrodeposited on indium tin oxide substrate. In Journal of Energy Storage 61, p. 106711. doi: 10.1016/j.est.2023.106711.
  • 9. Huang, Yingying; Lu, Jinlin; Kang, Shumei; Weng, Duo; Han, Lu; Wang, Yongfei (2019) Synthesis and Application of MnO2/PANI/MWCNT Ternary Nanocomposite as an Electrode Material for Supercapacitors. In International Journal of Electrochemical Science 14 (9), pp. 9298–9310. doi: 10.20964/2019.09.86.
  • 10. IBRAHIM, H.; Ilınca, A.; PERRON, J. (2008) Energy storage systems—Characteristics and comparisons. In Renewable and Sustainable Energy Reviews 12 (5), pp. 1221–1250. doi: 10.1016/j.rser.2007.01.023.
  • 11. Iqbal, Javed; Ansari, Mohammad Omaish; Numan, Arshid; Wageh, S.; Al-Ghamdi, Ahmed; Alam, Mohd Gulfam et al. (2020) Hydrothermally Assisted Synthesis of Porous Polyaniline@Carbon Nanotubes- Manganese Dioxide Ternary Composite for Potential Application in Supercapattery. In Polymers 12 (12). doi: 10.3390/polym12122918.
  • 12. Islam, Rakibul; Papathanassiou, Anthony N.; Chan-Yu-King, Roch; Gors, Carole; Roussel, Frédérick (2020) Competing charge trapping and percolation in core-shell single wall carbon nanotubes/ polyaniline nanostructured composites. In Synthetic Metals 259, p. 116259. doi: 10.1016/j.synthmet.2019.116259.
  • 13. Kaushal, Indu; Sharma, Ashok K.; Saharan, Priya; Sadasivuni, Kishor Kumar; Duhan, Surender (2019) Superior architecture and electrochemical performance of MnO2 doped PANI/CNT graphene fastened composite. In J Porous Mater 26 (5), pp. 1287–1296. doi: 10.1007/s10934-019-00728-8.
  • 14. Li, Yu; Zhang, Xiaobin; Luo, Junhang; Huang, Wanzhen; Cheng, Jipeng; Luo, Zhiqiang et al. (2004) Purification of CVD synthesized single-wall carbon nanotubes by different acid oxidation treatments. In Nanotechnology 15 (11), pp. 1645–1649. doi: 10.1088/0957-4484/15/11/047.
  • 15. Liu, Wenjie; Wang, Shishuang; Wu, Qianhui; Huan, Long; Zhang, Xiue; Yao, Chao; Chen, Ming (2016) Fabrication of ternary hierarchical nanofibers MnO2/PANI/CNT and theirs application in electrochemical supercapacitors. In Chemical Engineering Science 156, pp. 178–185. doi: 10.1016/j.ces.2016.09.025.
  • 16. Mazloomian, Katrina; Lancaster, Hector J.; Howard, Christopher A.; Shearing, Paul R.; Miller, Thomas S. (2023) Supercapacitor Degradation: Understanding Mechanisms of Cycling‐Induced Deterioration and Failure of a Pseudocapacitor. In Batteries & Supercaps 6 (8), Article e202300214. doi: 10.1002/batt.202300214.
  • 17. Sankar, A.; Chitra, S. Valli; Jayashree, M.; Parthibavarman, M.; Amirthavarshini, T. (2022) NiO nanoparticles/graphene nanocomposite as high-performance pseudocapacitor electrodes: Design and implementation. In Diamond and Related Materials 122, p. 108804. doi: 10.1016/j.diamond.2021.108804.
  • 18. Sharma, Ashok K.; Sharma, Yashpal (2013) p-toluene sulfonic acid doped polyaniline carbon nanotube composites: synthesis via different routes and modified properties. In J. Electrochem. Sci. Eng. doi: 10.5599/jese.2013.0029.
  • 19. Shi, Chenglong; Sun, Junlong; Pang, Youyong; Liu, YongPing; Huang, Bin; Liu, Bo-Tian (2022) A new potassium dual-ion hybrid supercapacitor based on battery-type Ni(OH)2 nanotube arrays and pseudocapacitor-type V2O5-anchored carbon nanotubes electrodes. In Journal of colloid and interface science 607 (Pt 1), pp. 462–469. doi: 10.1016/j.jcis.2021.09.011.
  • 20. Tian, Menghan; Liu, Xueqing; Diao, Xungang; Zhong, Xiaolan (2023) High performance PANI/MnO2 coral-like nanocomposite anode for flexible and robust electrochromic energy storage device. In Solar Energy Materials and Solar Cells 253, p. 112239. doi: 10.1016/j.solmat.2023.112239.
  • 21. Wu, Huatao; La, Ming; Li, JinHui; Han, Yongjun; Feng, Yunxiao; Peng, Qinlong; Hao, Chengjun (2019) Preparation and electrochemical properties of MnO 2 /PANI-CNTs composites materials. In Composite Interfaces 26 (8), pp. 659–677. doi: 10.1080/09276440.2018.1526592.
  • 22. Yakymchuk, Olena M.; Perepelytsina, Olena M.; Dobrydnev, Alexey V.; Sydorenko, Mychailo V. (2015) Effect of single-walled carbon nanotubes on tumor cells viability and formation of multicellular tumor spheroids. In Nanoscale research letters 10, p. 150. doi: 10.1186/s11671-015-0858-7.
  • 23. Yuksel, Recep; Unalan, Husnu Emrah (2015) Textile supercapacitors-based on MnO 2 /SWNT/conducting polymer ternary composites. In Int. J. Energy Res. 39 (15), pp. 2042–2052. doi: 10.1002/er.3439.
  • 24. Zhang, Qun-Zheng; Zhang, Dian; Miao, Zong-Cheng; Zhang, Xun-Li; Chou, Shu-Lei (2018) Research Progress in MnO2 -Carbon Based Supercapacitor Electrode Materials. In Small (Weinheim an der Bergstrasse, Germany) 14 (24), e1702883. doi: 10.1002/smll.201702883.
  • 25. Zhou, Lei; Li, Chunyang; Liu, Xiang; Zhu, Yusong; Wu, Yuping; van Ree, Teunis (2018) Metal oxides in supercapacitors. In : Metal Oxides in Energy Technologies: Elsevier, pp. 169–203.
There are 25 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other), Polymer Science and Technologies, Composite and Hybrid Materials
Journal Section Research Articles
Authors

Çağatay Özada 0000-0003-1503-1232

Merve Ünal 0000-0003-2208-181X

Hakkı Özer 0000-0003-0951-8490

Murat Yazıcı 0000-0002-8720-7594

Project Number FOA-2021-681 ve TÜBİTAK 1002-B 122M934
Early Pub Date December 2, 2023
Publication Date December 27, 2023
Submission Date May 1, 2023
Acceptance Date September 25, 2023
Published in Issue Year 2023 Volume: 28 Issue: 3

Cite

APA Özada, Ç., Ünal, M., Özer, H., Yazıcı, M. (2023). DEVELOPMENT OF MNO2/PANI/SWCNT NANOCOMPOSITE SUPERCAPACITOR ELECTRODE AND INVESTIGATION OF ELECTROCHEMICAL PERFORMANCE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(3), 887-904. https://doi.org/10.17482/uumfd.1290797
AMA Özada Ç, Ünal M, Özer H, Yazıcı M. DEVELOPMENT OF MNO2/PANI/SWCNT NANOCOMPOSITE SUPERCAPACITOR ELECTRODE AND INVESTIGATION OF ELECTROCHEMICAL PERFORMANCE. UUJFE. December 2023;28(3):887-904. doi:10.17482/uumfd.1290797
Chicago Özada, Çağatay, Merve Ünal, Hakkı Özer, and Murat Yazıcı. “DEVELOPMENT OF MNO2/PANI/SWCNT NANOCOMPOSITE SUPERCAPACITOR ELECTRODE AND INVESTIGATION OF ELECTROCHEMICAL PERFORMANCE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, no. 3 (December 2023): 887-904. https://doi.org/10.17482/uumfd.1290797.
EndNote Özada Ç, Ünal M, Özer H, Yazıcı M (December 1, 2023) DEVELOPMENT OF MNO2/PANI/SWCNT NANOCOMPOSITE SUPERCAPACITOR ELECTRODE AND INVESTIGATION OF ELECTROCHEMICAL PERFORMANCE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 3 887–904.
IEEE Ç. Özada, M. Ünal, H. Özer, and M. Yazıcı, “DEVELOPMENT OF MNO2/PANI/SWCNT NANOCOMPOSITE SUPERCAPACITOR ELECTRODE AND INVESTIGATION OF ELECTROCHEMICAL PERFORMANCE”, UUJFE, vol. 28, no. 3, pp. 887–904, 2023, doi: 10.17482/uumfd.1290797.
ISNAD Özada, Çağatay et al. “DEVELOPMENT OF MNO2/PANI/SWCNT NANOCOMPOSITE SUPERCAPACITOR ELECTRODE AND INVESTIGATION OF ELECTROCHEMICAL PERFORMANCE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/3 (December 2023), 887-904. https://doi.org/10.17482/uumfd.1290797.
JAMA Özada Ç, Ünal M, Özer H, Yazıcı M. DEVELOPMENT OF MNO2/PANI/SWCNT NANOCOMPOSITE SUPERCAPACITOR ELECTRODE AND INVESTIGATION OF ELECTROCHEMICAL PERFORMANCE. UUJFE. 2023;28:887–904.
MLA Özada, Çağatay et al. “DEVELOPMENT OF MNO2/PANI/SWCNT NANOCOMPOSITE SUPERCAPACITOR ELECTRODE AND INVESTIGATION OF ELECTROCHEMICAL PERFORMANCE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 28, no. 3, 2023, pp. 887-04, doi:10.17482/uumfd.1290797.
Vancouver Özada Ç, Ünal M, Özer H, Yazıcı M. DEVELOPMENT OF MNO2/PANI/SWCNT NANOCOMPOSITE SUPERCAPACITOR ELECTRODE AND INVESTIGATION OF ELECTROCHEMICAL PERFORMANCE. UUJFE. 2023;28(3):887-904.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.