DYEING OF SILK IN EDIRNE RED COLOR WITH MADDER
Year 2023,
Volume: 28 Issue: 3, 761 - 774, 27.12.2023
İsmail Yüce
,
Nilgun Becenen
Abstract
Silk is a natural filament obtained from the Bombyx mori species of silkworm, with a fiber length of up to 3000 meters. During the Ottoman era in Edirne, sericulture and silk trade were important activities. To this end, silk factories, trade centers, and silk weaving schools were established, creating an important source of income for the people of Edirne. Edirne Red is a natural dye obtained from the Rubia Tinctorum L. plant and is part of the Ottoman Empire's heritage. This dye is resistant to sunlight and washing. It has been used in Turkish carpets, as well as in silk and cotton fabrics. The aim of this study is to bring together the importance of Edirne Red and silk in Edirne's history. For this purpose, 100% silk fabrics were dyed using madder (Rubia Tinctorum L.) grown within the borders of Edirne province. The effects of dye ratios and auxiliary chemicals used on color and colorfastness were examined during the dyeing process. The color values of the fabrics were measured numerically in the CIEL*a*b* color space, and the washing and light fastness values of the dyed fabrics were also measured. Additionally, highperformance liquid chromatography (HPLC) analyses were performed on both the used madder and the dyed fabric. Based on the obtained data, the closest Edirne Red color was achieved by pre-mordanting fabric before dyeing and using ethanol as the dye solvent. Madder dye, successfully applied to silk fabrics under different conditions, has shown good results in terms of color yield and fastness properties.
Thanks
This study was financially supported within the scope of the research project "TUBAP 2022/46" conducted by the Trakya University Scientific Research Projects Unit. The cultivation of Rubia Tinctorium L. plant, harvesting of roots, and pulverization were carried out at Trakya University Havsa Vocational School. We would like to thank our Vocational School Director Prof. Dr. Mustafa Tan for his support. We would also like to thank Textile Engineer Ece Karaman at Edirne Kilim Textile Factory for her assistance in the washing and lightfastness tests.
References
- 1. Akman, O. (2021) Edirne Kırmızısı’nın Trakya Üniversitesi Tarafından Edirne Kent Turizmine Kazandırılması Çalışmaları, Yüksek Lisans Tezi, T.Ü. Sosyal Bilimler Enstitüsü, Edirne.
- 2. Cosmulescu, S. N., Trandafir, I. and Cornescu, F. (2019) Antioxidant capacity, total phenols, total flavonoids and colour component of cornelian cherry (Cornus mas L.) wild genotypes, Notulae
Botanicae Horti Agrobotanici Cluj-Napoca, 47(2), 390-394. doi: 10.15835/nbha47111375
- 3. De Santis, D. and Moresi, M. (2007) Production of alizarin extracts from Rubia tinctorum and assessment of their dyeing properties, Industrial Crops and Products, 26(2), 151-162.doi:
10.1016/j.indcrop.2007.02.002
- 4. Derksen, G. C., Niederländer, H. A. and van Beek, T. A. (2002) Analysis of anthraquinones in Rubia tinctorum L. by liquid chromatography coupled with diode-array UV and mass spectrometric
detection , Journal of chromatography A, 978(1-2), 119-127. doi: 10.1016/S0021-9673(02)01412-7
- 5. Derksen, G. C., van Beek, T. A., de Groot, Æ. and Capelle, A. (1998) High-performance liquid chromatographic method for the analysis of anthraquinone glycosides and aglycones in madder root
(Rubia tinctorum L.), Journal of Chromatography A, 816(2), 277-281. doi: 10.1016/S0021-9673(98)00492-0
- 6. Ford, L., Rayner, C. M. and Blackburn, R. S. (2015) Isolation and extraction of ruberythric acid from Rubia tinctorum L. and crystal structure elucidation , Phytochemistry, 117, 168-173. doi:
10.1016/j.phytochem.2015.06.015
- 7. Karapanagiotis, I., Abdel-Kareem, O., Kamaterou, P. and Mantzouris, D. (2021) Identification of dyes in coptic textiles from the museum of faculty of archaeology, cairo university. Heritage, 4(4),
3147-3156. doi: 10.3390/heritage4040176
- 8. Karapanagiotis, I., and Karadag, R. (2015) Dyes in post-byzantine and ottoman textiles: a comparative HPLC study, Mediterranean Archaeology and Archaeometry, 15(1), 177-189. doi:
10.5281/zenodo.15052
- 9. Kasiri, M. B., and Safapour, S. (2015) Exploring and exploiting plants extracts as the natural dyes/antimicrobials in textiles processing , Prog. Color Colorants Coat., 8 , 87-114. doi:
10.30509/PCCC.2015.75856
- 10. Marhoume, F. Z., Aboufatima, R., Zaid, Y., Limami, Y., Duval, R. E., Laadraoui, J., ... and Bagri, A. (2021) Antioxidant and polyphenol-rich ethanolic extract of rubia tinctorum L. prevents urolithiasis in an
ethylene glycol experimental model in rats, Molecules, 26(4), 1005.doi: 10.3390/molecules26041005
- 11. Özer, L. M., Karadağ, R. and Torgan, E. (2016) Investigation of the Effect of Turkey Red Oil on Colour, Fastness Properties and HPLC-DAD Analysis of Silk Fabrics Dyed with Madder (Rubia Tinctorium
L.) and Gall Oak, Tekstil ve Mühendis, 23(103), 197-204. doi:10.7216/1300759920162310305
- 12. Pereira, R. F., Silva, M. M. and de Zea Bermudez, V. (2015) Bombyx mori silk fibers: an outstanding family of materials, Macromolecular materials and engineering, 300(12), 1171-1198.doi:
10.1002/mame.201400276
- 13. Singh, K., Kumar, P. and Singh, N. V. (2020) Natural dyes: an emerging ecofriendly solution for textile industries, Poll Res, 39(2), S87-S94.
- 14. TS EN ISO 105-B02, (2013). Textiles — Tests for colour fastness — Part B02: Colour fastness to artificial light: Xenon arc fading lamp test, Turkish Standards Institute, Ankara.
- 15. TS- EN-ISO105 C06, (2010). Textiles — Tests for colour fastness — Part C06: Colour fastness to domestic and commercial laundering, Turkish Standards Institute, Ankara.
- 16. Yang, Y. Q. and Li, S. (1993) Silk fabric non-formaldehyde crease-resistant finishing using citric acid, Journal of the Textile Institute, 84(4), 638-644. doi: 10.1080/00405009308658995
- 17. Yılmaz Şahinbaşkan, B., Karadag, R. and Torgan, E. (2018) Dyeing of silk fabric with natural dyes extracted from cochineal (Dactylopius coccus Costa) and gall oak (Quercus infectoria Olivier),
Journal of Natural Fibers, 15(4), 559-574. doi: 10.1080/15440478.2017.1349708
İpeğin Kök Boya İle Edirne Kırmızısı Rengine Boyanması
Year 2023,
Volume: 28 Issue: 3, 761 - 774, 27.12.2023
İsmail Yüce
,
Nilgun Becenen
Abstract
İpek, bombyx mori türü ipek böceğinden elde edilen ve lif uzunluğu 3000 m.ye kadar ulaşabilen doğal bir filamenttir. Osmanlı dönemi Edirne’sinde, ipek böcekçiliği ve ticareti önemli bir yer tutmuştur. Bu amaçla, ipek fabrikaları, ticaret hanı, ipekçilik okulu kurulmuş ve Edirne halkı için ipek önemli bir gelir kaynağı yaratmıştır. Edirne Kırmızısı, Rubia Tinctorum L. bitkisinden elde edilen doğal bir boyadır ve Osmanlı imparatorluk mirasıdır. Bu boya güneş ışığına ve yıkamaya karşı dirençlidir. Türk halılarında, ipek ve pamuklu kumaşlarda kullanılmıştır. Yapılan bu çalışmada Edirne tarihinde önemli yer edinen Edirne kırmızısını ve ipekçiliği bir araya getirmek amaçlanmıştır. Bu amaçla, Edirne ili sınırları içerisinde yetişen Rubia Tinctorum L. kök boya bitkisi kullanılarak %100 ipekli kumaşlar boyanmıştır. Boyama işleminde, boyarmadde oranlarının ve kullanılan yardımcı kimyasalların renk ve haslık üzerindeki etkileri incelenmiştir. Elde edilen boyamalar sonucunda CIEL*a*b* renk alanında kumaşların renk değerleri sayısal olarak ölçülmüş ve aynı zamanda boyalı kumaşların yıkama ve sürtme haslık değerleri analiz edilmiştir. Aynı zamanda kullanılan kök boyarmaddenin ve boyanmış kumaşın yüksek performanslı sıvı kromatografisi (HPLC) analizleri gerçekleştirilmiştir. Elde edilen veriler ışığında, kumaşın boyamadan önce ön mordanlama yapılması ve boyarmadde çözücüsü olarak etanol kullanılması sonucu en yakın Edirne kırmızısı rengi elde edilmiştir. İpekli kumaşlara farklı koşullarda başarıyla uygulanan kök boya, renk verimi ve haslık özellikleri açısından iyi sonuçlar vermiştir.
References
- 1. Akman, O. (2021) Edirne Kırmızısı’nın Trakya Üniversitesi Tarafından Edirne Kent Turizmine Kazandırılması Çalışmaları, Yüksek Lisans Tezi, T.Ü. Sosyal Bilimler Enstitüsü, Edirne.
- 2. Cosmulescu, S. N., Trandafir, I. and Cornescu, F. (2019) Antioxidant capacity, total phenols, total flavonoids and colour component of cornelian cherry (Cornus mas L.) wild genotypes, Notulae
Botanicae Horti Agrobotanici Cluj-Napoca, 47(2), 390-394. doi: 10.15835/nbha47111375
- 3. De Santis, D. and Moresi, M. (2007) Production of alizarin extracts from Rubia tinctorum and assessment of their dyeing properties, Industrial Crops and Products, 26(2), 151-162.doi:
10.1016/j.indcrop.2007.02.002
- 4. Derksen, G. C., Niederländer, H. A. and van Beek, T. A. (2002) Analysis of anthraquinones in Rubia tinctorum L. by liquid chromatography coupled with diode-array UV and mass spectrometric
detection , Journal of chromatography A, 978(1-2), 119-127. doi: 10.1016/S0021-9673(02)01412-7
- 5. Derksen, G. C., van Beek, T. A., de Groot, Æ. and Capelle, A. (1998) High-performance liquid chromatographic method for the analysis of anthraquinone glycosides and aglycones in madder root
(Rubia tinctorum L.), Journal of Chromatography A, 816(2), 277-281. doi: 10.1016/S0021-9673(98)00492-0
- 6. Ford, L., Rayner, C. M. and Blackburn, R. S. (2015) Isolation and extraction of ruberythric acid from Rubia tinctorum L. and crystal structure elucidation , Phytochemistry, 117, 168-173. doi:
10.1016/j.phytochem.2015.06.015
- 7. Karapanagiotis, I., Abdel-Kareem, O., Kamaterou, P. and Mantzouris, D. (2021) Identification of dyes in coptic textiles from the museum of faculty of archaeology, cairo university. Heritage, 4(4),
3147-3156. doi: 10.3390/heritage4040176
- 8. Karapanagiotis, I., and Karadag, R. (2015) Dyes in post-byzantine and ottoman textiles: a comparative HPLC study, Mediterranean Archaeology and Archaeometry, 15(1), 177-189. doi:
10.5281/zenodo.15052
- 9. Kasiri, M. B., and Safapour, S. (2015) Exploring and exploiting plants extracts as the natural dyes/antimicrobials in textiles processing , Prog. Color Colorants Coat., 8 , 87-114. doi:
10.30509/PCCC.2015.75856
- 10. Marhoume, F. Z., Aboufatima, R., Zaid, Y., Limami, Y., Duval, R. E., Laadraoui, J., ... and Bagri, A. (2021) Antioxidant and polyphenol-rich ethanolic extract of rubia tinctorum L. prevents urolithiasis in an
ethylene glycol experimental model in rats, Molecules, 26(4), 1005.doi: 10.3390/molecules26041005
- 11. Özer, L. M., Karadağ, R. and Torgan, E. (2016) Investigation of the Effect of Turkey Red Oil on Colour, Fastness Properties and HPLC-DAD Analysis of Silk Fabrics Dyed with Madder (Rubia Tinctorium
L.) and Gall Oak, Tekstil ve Mühendis, 23(103), 197-204. doi:10.7216/1300759920162310305
- 12. Pereira, R. F., Silva, M. M. and de Zea Bermudez, V. (2015) Bombyx mori silk fibers: an outstanding family of materials, Macromolecular materials and engineering, 300(12), 1171-1198.doi:
10.1002/mame.201400276
- 13. Singh, K., Kumar, P. and Singh, N. V. (2020) Natural dyes: an emerging ecofriendly solution for textile industries, Poll Res, 39(2), S87-S94.
- 14. TS EN ISO 105-B02, (2013). Textiles — Tests for colour fastness — Part B02: Colour fastness to artificial light: Xenon arc fading lamp test, Turkish Standards Institute, Ankara.
- 15. TS- EN-ISO105 C06, (2010). Textiles — Tests for colour fastness — Part C06: Colour fastness to domestic and commercial laundering, Turkish Standards Institute, Ankara.
- 16. Yang, Y. Q. and Li, S. (1993) Silk fabric non-formaldehyde crease-resistant finishing using citric acid, Journal of the Textile Institute, 84(4), 638-644. doi: 10.1080/00405009308658995
- 17. Yılmaz Şahinbaşkan, B., Karadag, R. and Torgan, E. (2018) Dyeing of silk fabric with natural dyes extracted from cochineal (Dactylopius coccus Costa) and gall oak (Quercus infectoria Olivier),
Journal of Natural Fibers, 15(4), 559-574. doi: 10.1080/15440478.2017.1349708