Araştırma Makalesi
BibTex RIS Kaynak Göster

Kisspeptin’in Gelişimsel Döneme Bağlı Olarak Dişi Sıçanlarda Medial Preoptik Bölgede İn Vitro Noradrenalin Salıverilmesi Üzerine Etkisi

Yıl 2020, , 181 - 188, 01.08.2020
https://doi.org/10.32708/uutfd.722097

Öz

Üçüncü ventrikülün rostral periventriküler bölgesinde lokalize olan kisspeptin nöronlarının, ovulasyon öncesi LH salıverilmesinden sorumlu olan GnRH nöronlarının major stimülatörü olduğu son yıllarda yapılan çalışmalar ile ortaya konmuştur. GnRH salıverilmesinin bir diğer ana modülatörü ise noradrenerjik sistemdir. Kisspeptinerjik ve noradrenerjik nöronların medial preoptik bölgedeki (MPB) yerleşimleri çok yakınlık göstermekle birlikte, bu iki sistem arasındaki ilişkinin yapılacak çalışmalar ile aydınlatılmasına ihtiyaç duyulmaktadır. Yapılan bu çalışma gelişim dönemi farklı dişi Sprague Dawley sıçanların MPB’sinden hazırlanan beyin dilimleri kullanılarak kisspeptinin noradrenalin (NA) salıverilmesi üzerine direk etkisinin olup olmadığını ortaya koymak amacı ile yapılmıştır. Oksijenlenmiş Krebs solüsyonu içeren inkübasyon kuyucuklarına yerleştirilen dilimler preinkübasyon dönemi ardından 60 dakika boyunca kisspeptin (40 ve 400 μM) ile inkübe edildi. İnkübasyon periyodu sonrasında inkübasyon ortamı salınan NA düzeylerinin belirlenmesi amacıyla kullanıldı. Salıverilmenin Ca2+ ile ilişkisini incelemek amacıyla Ca2+’suz Krebs solüsyonu ve hücre dışı Ca2+ şelasyonu için 400 μM BAPTA kullanıldı. Prepubertal, adölesan ve yetişkin dişi sıçanların MPB’den elde edilen dilimlerin 40 ve 400 μM kisspeptin ile inkübasyonu prepubertal dönemdeki dilimlerden NA salıverilmesini etkilemezken, adölesan ve yetişkin sıçanlarda ise salıverilmenin anlamlı olarak arttığı gözlendi. Ca2+’un ortamdan uzaklaştırılması kisspeptin kaynaklı NA salıverilmesinde anlamlı bir düşüşe (p‹0.05) neden olması veziküler salım mekanizmasının ekstrasellüler Ca+2 iyonlarına bağımlı olduğunu göstermiştir. Kisspeptinin NA salıverilmesini direkt olarak uyarabildiğini gösteren bu bulgular, söz konusu peptidin NA salıverilmesi üzerinden GnRH salıverilmesini indirekt olarak modüle edebileceğini düşündürmektedir.

Kaynakça

  • 1.Herbison AE. Physiology of the adult gonadotropin-releasing hormone neuronal network. In: Plant T, Zeleznik A, eds. Knobil and Neill’s Physiology of Reproduction. 4th ed. London: Elsevier 2015;399–467.
  • 2.Seminara SB, Messager S, Chatzidaki EE, et al. The GPR54 gene as a regulator of puberty. N Engl J Med 2003;349:1614–27.
  • 3. Dhillo WS. Kisspeptin: a novel regulator of reproductive function. J Neuroendocrinol 2008;20:963–70.
  • 4. Seminara SB, Crowley WF Jr. Kisspeptin and GPR54: discovery of a novel pathway in reproduction. J Neuroendocrinol 2008;20:727–31.
  • 5. Jayasena CN, Dhillo WS, Bloom SR. Kisspeptin and the control of gonadotropin secretion in humans. Peptides 2009;30:76–82
  • 6. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 2003;100:10972–6.
  • 7.Dungan HM, Gottsch ML, Zeng H,et al. The role of kisspeptin GPR54 signaling in the tonic regulation and surge release of gonadotropin-releasing hormone/luteinizing hormone. J Neurosci 2007; 27(44):12088 –95.
  • 8.Herbison AE. Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the third ventricle (RP3V). Brain Res Rev. 2008;57(2):277–287.
  • 9.Han S-K, Gottsch ML, Lee KJ, et al. Activation of gonadotropin releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci. 2005;25(49):11349–56.
  • 10. Messager S, Chatzidaki EE, Ma D, et al. Kisspeptin directly stimulates gonadotropin releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A 2005;102:1761–6.
  • 11. Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun 2004;320:383–8.
  • 12. Navarro VM, Castellano JM, Fernández-Fernández R, et al. Effects of KiSS-1 peptide, the natural ligand of GPR54, on follicle-stimulating hormone secretion in the rat. Endocrinology 2005;146:1689–97.
  • 13. Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci U S A 2005;102:2129–34.
  • 14. Sawyer CH. First Geoffrey Harris Memorial lecture. Some recent developments in brain-pituitary-ovarian physiology. Neuroendocrinology 1975;17: 97–124.
  • 15. Weiner RI, Ganong WF. Role of brain monoamines and histamine in regulation of anterior pituitary secretion. Physiol Rev 1978; 58: 905–976.
  • 16. Gallo RV. Neuroendocrine regulation of pulsatile luteinizing hormone release in the rat. Neuroendocrinology 1980; 30: 122–131.
  • 17. Kalra SP. Neural circuitry involved in the control of LHRH secretion: a model for preovulatory LH release. Front Neuroendocrinol 1986; 9: 31–75.
  • 18. Ramirez VD, Ramirez AD, Slamet W, Nduka E. Functional characteristics of the luteinizing hormone-releasing hormone pulse generator in trial, unrestrained female rabbits: activation by norepinephrine. Endocrinology 1986; 118: 2331–2339.
  • 19. Terasawa E, Krook C, Hei DL, Gearing M, Schultz NJ, Davis GA. Norepinephrine is a possible neurotransmitter stimulating pulsatile release of luteinizing hormone-releasing hormone in the rhesus monkey. Endocrinology 1988; 123: 1808–1816.
  • 20. Pau KY, Hess DL, Kaynard AH, Ji WZ, Gliessman PM, Spies HG. Suppression of mediobasal hypothalamic gonadotropin-releasing hormone and plasma luteinizing hormone pulsatile patterns by phentolamine in ovariectomized rhesus macaques. Endocrinology 1989; 124: 891–898.
  • 21. Pau KY, Gliessman PM, Oyama T, Spies HG. Disruption of GnRH pulses by anti-GnRH serum and phentolamine obliterates pulsatile LH but not FSH secretion in ovariectomized rabbits. Neuroendocrinology 1991; 53: 382–391.
  • 22. Kafa MI, Eyigör Ö. Kisspeptins and Kisspeptin Neurons: Effects on Reproductive System and Hypothalamic Localizations. Uludağ Tıp Fakültesi Dergisi 2011:37 (1) 53-60,
  • 23. Francis Pau KY, Cyrus JL, Cowles A, Yang SP, Hess DL, Spies HG. Possible Involvement of Norepinephrine Transporter Activity in the Pulsatility of Hypothalamic Gonadotropin-Releasing Hormone Release: Influence of the Gonad. Journal of Neuroendocrinology 1998; 10:21–29.
  • 24.Tassigny X, Ackroyd K.J, Chatzidaki E.E, Colledge WH. Kisspeptin Signaling Is Required for Peripheral But Not Central Stimulation of Gonadotropin-Releasing Hormone Neurons by NMDA. The Journal of Neuroscience, June 23, 2010. 30(25):8581– 8590.
  • 25. Gul Z, Buyukuysal MC, Buyukuysal RL. Brain slice viability determined under normoxic and oxidative stress conditions: involvement of slice quantity in the medium. Neurological Research 2020;42:228-238.
  • 26. Gul Z, Demircan C, Bagdas D, Buyukuysal RL. Aging protects rat cortical slices against to oxygen-glucose deprivation induced damage. International Journal of Neuroscience 2020;1-9.
  • 27. Herbison AE. Noradrenergic regulation of cyclic GnRH secretion. Rev Reprod 1997;2(1):1– 6.
  • 28. Helena CVV, Szawka RE, Anselmo-Franci JA. Noradrenaline involvement in the negative-feedback effects of ovarian steroids on luteinising hormone secretion. J Neuroendocrinol 2009;21(10):805–12.
  • 29. Haywood SA, Simonian SX, van der Beek EM, Bicknell RJ, Herbison AE. Fluctuating estrogen and progesterone receptor expression in brainstem norepinephrine neurons through the rat estrous cycle. Endocrinology 1999;140(7):3255–63.
  • 30.Szawka RE, Franci CR, Anselmo-Franci JA. Noradrenaline release in the medial preoptic area during the rat oestrous cycle: temporal relationship with plasma secretory surges of prolactin and luteinising hormone. J Neuroendocrinol 2007;19(5):374–382.
  • 31. Szawka RE, PoletiniMO, Leite CM, et al. Release of norepinephrine in the preoptic area activates anteroventral periventricular nucleus neurons and stimulates the surge of luteinizing hormone. Endocrinology 2013;154(1):363–374.
  • 32. Gnodde HP, Schuiling GA. Involvement of catecholaminergic and cholinergic mechanisms in the pulsatile release of LH in the longterm ovariectomized rat. Neuroendocrinology 1976;20(3):212–23.
  • 33. Kalra PS, Kalra SP, Krulich L, Fawcett CP, McCann SM. Involvement of norepinephrine in transmission of the stimulatory influence of progesterone on gonadotropin release. Endocrinology 1972;90(5):1168–76.
  • 34.Le W, Berghorn KA, Smith MS, Hoffman GE. 1-Adrenergic receptor blockade blocks LH secretion but not LHRH cFos activation. Brain Res 1997;747(96):236–45.
  • 35. Weick RF. Acute effects of adrenergic receptor blocking drugs and neuroleptic agents on pulsatile discharges of luteinizing hormone in the ovariectomized rat. Neuroendocrinology 1978;26(2):108–17.
  • 36. Anselmo-Franci JA, Franci CR, Krulich L, Antunes-Rodrigues J, McCann SM. Locus coeruleus lesions decrease norepinephrine input into the medial preoptic area and medial basal hypothalamus and block the LH, FSH and prolactin preovulatory surge. Brain Res 1997;767(2):289–296.
  • 37. Han S-K, Herbison AE. Norepinephrine suppresses gonadotropin releasing hormone neuron excitability in the adult mouse. Endocrinology 2008;149(3):1129–35.
  • 38. Marraudino M, Miceli D, Farinetti A, Ponti G, Panzica G, Gotti S. Kisspeptin innervation of the hypothalamic paraventricular nucleus: sexual dimorphism and effect of estrous cycle in female mice. J Anat 2017;230:775–86.
  • 39. Navarro VM, Castellano JM, McConkey SM, et al. Interactions between kisspeptin and neurokinin B in the control of GnRH secretion in the female rat. Am J Physiol Endocrinol Metab 2011;300:E202–E210.
  • 40. Padilla SL, Qiu J, Nestor CC, et al. AgRP to Kiss1 neuron signaling links nutritional state and fertility. Proc Natl Acad Sci USA Biol Sci 2017: 201621065.
  • 41.Manfredi-Lozano M, Roa J, Ruiz-Pino F, et al. Defining a novel leptin–melanocortin–kisspeptin pathway involved in the metabolic control of puberty. Mol Metab 2016;5:844–57.
  • 42. Min L, Adeola O, Carroll RS, Kaiser UB. Glutamate Acts as a Cofactor in the Activation of KISS1R by Kisspeptin, Signaling Originating from Membrane Receptors. Endocrine Society 2013; SUN-402-SUN-402.
  • 43. Cheong RY, Czieselsky K, Porteous R, Herbison AE. Expression of ESR1 in glutamatergic and GABAergic neurons is essential for normal puberty onset, estrogen feedback, and fertility in female mice. J Neurosci 2015;35:14533–43.
  • 44. Fernandois D, Na E, Cuevas F, Cruz G, Lara H, Paredes AH. Kisspeptin is involved in ovarian follicular development during aging in rats. J Endocrinol 2016;228:161–70.
  • 45. Fernandois D, Cruz G, Na EK, Lara HE, Paredes AH. Kisspeptin level in the aging ovary is regulated by the sympathetic nervous system. J Endocrinol 2017;232:97–105.
  • 46. Kalil B, Ribeiro AB, Leite CM, et al. The Increase in Signaling by Kisspeptin Neurons in the Preoptic Area and Associated Changes in Clock Gene Expression That Trigger the LH Surge in Female Rats Are Dependent on the Facilitatory Action of a Noradrenaline Input. Endocrinology 2016;157:323–35.
  • 47. Du XJ, Bobik A, Esler MD, Dart MA. Effects of Intracellular Ca2+ Chelating on Noradrenaline Release ın Normoxic and Anoxic Hearts. Clinical and Experimental Pharmacology and Physiology 1997;24:819-23.
  • 48. Lowry OH, Rosebrough NJ, Farr AL. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 1951;193: 265-275.
  • 49. Campbell RE, Herbison AE. Definition of brainstem afferents to gonadotropin-releasing hormone neurons in the mouse using con- ditional viral tract tracing. Endocrinology 2007;148:5884-90.
  • 50. Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci 2015:37:1-20.
  • 51. Demircan C, Gul Z, Buyukuysal RL. High glutamate attenuates S100B and LDH outputs from rat cortical slices enhanced by either oxygen–glucose deprivation or menadione. Neurochemical research 2014:39:1232-1244.

Kisspeptin Stimulates In Vitro Noradrenaline Release in Medial Preoptic Area of the Female Rats Depending on Developmental Stage

Yıl 2020, , 181 - 188, 01.08.2020
https://doi.org/10.32708/uutfd.722097

Öz

Kisspeptin neurons localized in the rostral periventricular area of the third ventricle are considered to provide a major stimulatory input to the GnRH neuronal network which is responsible for triggering the preovulatory LH surge. Noradrenaline (NA) is one of the main modulators of GnRH release. Although NA fibers are found in close opposition to kisspeptin neurons, interaction between kisspeptin and NA neurons needs to be clarify. Thus, present study was undertaken to determine whether kisspeptin can directly regulate NA release from brain slices prepared from medial preoptic area (MPOA) the rats. Brain slices prepared from female prepubertal, adolescents or adult Sprague Dawley rats were placed incubation wells containing oxygenated Krebs. After preincubation period, slices were incubated with two concentrations of kisspeptin (40 and 400 μM) for 60 min. At the end of kisspeptin incubation, incubation medium was used for determination of NA released from the slices. When used Ca+2-free medium, 400 μM of BAPTA was also added into the medium to chelate the extracellular Ca+2. Incubation of the brain slices prepared from MPOA of the adolescent and adult female rats with 40 and 400 μM of kisspeptin caused significant increase in NA release, unlike prepubertal rat. Since removal of the Ca+2 from the medium caused significant decline in kisspeptin-induced NA release (p‹0.05), a vesicular release mechanism seems to be likely involved. The results presented here probably indicate that in addition to direct effect of kisspeptin, it may also modulate GnRH release indirectly by increasing NA release from MPOA of hypothalamus.

Kaynakça

  • 1.Herbison AE. Physiology of the adult gonadotropin-releasing hormone neuronal network. In: Plant T, Zeleznik A, eds. Knobil and Neill’s Physiology of Reproduction. 4th ed. London: Elsevier 2015;399–467.
  • 2.Seminara SB, Messager S, Chatzidaki EE, et al. The GPR54 gene as a regulator of puberty. N Engl J Med 2003;349:1614–27.
  • 3. Dhillo WS. Kisspeptin: a novel regulator of reproductive function. J Neuroendocrinol 2008;20:963–70.
  • 4. Seminara SB, Crowley WF Jr. Kisspeptin and GPR54: discovery of a novel pathway in reproduction. J Neuroendocrinol 2008;20:727–31.
  • 5. Jayasena CN, Dhillo WS, Bloom SR. Kisspeptin and the control of gonadotropin secretion in humans. Peptides 2009;30:76–82
  • 6. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 2003;100:10972–6.
  • 7.Dungan HM, Gottsch ML, Zeng H,et al. The role of kisspeptin GPR54 signaling in the tonic regulation and surge release of gonadotropin-releasing hormone/luteinizing hormone. J Neurosci 2007; 27(44):12088 –95.
  • 8.Herbison AE. Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the third ventricle (RP3V). Brain Res Rev. 2008;57(2):277–287.
  • 9.Han S-K, Gottsch ML, Lee KJ, et al. Activation of gonadotropin releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci. 2005;25(49):11349–56.
  • 10. Messager S, Chatzidaki EE, Ma D, et al. Kisspeptin directly stimulates gonadotropin releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A 2005;102:1761–6.
  • 11. Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun 2004;320:383–8.
  • 12. Navarro VM, Castellano JM, Fernández-Fernández R, et al. Effects of KiSS-1 peptide, the natural ligand of GPR54, on follicle-stimulating hormone secretion in the rat. Endocrinology 2005;146:1689–97.
  • 13. Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci U S A 2005;102:2129–34.
  • 14. Sawyer CH. First Geoffrey Harris Memorial lecture. Some recent developments in brain-pituitary-ovarian physiology. Neuroendocrinology 1975;17: 97–124.
  • 15. Weiner RI, Ganong WF. Role of brain monoamines and histamine in regulation of anterior pituitary secretion. Physiol Rev 1978; 58: 905–976.
  • 16. Gallo RV. Neuroendocrine regulation of pulsatile luteinizing hormone release in the rat. Neuroendocrinology 1980; 30: 122–131.
  • 17. Kalra SP. Neural circuitry involved in the control of LHRH secretion: a model for preovulatory LH release. Front Neuroendocrinol 1986; 9: 31–75.
  • 18. Ramirez VD, Ramirez AD, Slamet W, Nduka E. Functional characteristics of the luteinizing hormone-releasing hormone pulse generator in trial, unrestrained female rabbits: activation by norepinephrine. Endocrinology 1986; 118: 2331–2339.
  • 19. Terasawa E, Krook C, Hei DL, Gearing M, Schultz NJ, Davis GA. Norepinephrine is a possible neurotransmitter stimulating pulsatile release of luteinizing hormone-releasing hormone in the rhesus monkey. Endocrinology 1988; 123: 1808–1816.
  • 20. Pau KY, Hess DL, Kaynard AH, Ji WZ, Gliessman PM, Spies HG. Suppression of mediobasal hypothalamic gonadotropin-releasing hormone and plasma luteinizing hormone pulsatile patterns by phentolamine in ovariectomized rhesus macaques. Endocrinology 1989; 124: 891–898.
  • 21. Pau KY, Gliessman PM, Oyama T, Spies HG. Disruption of GnRH pulses by anti-GnRH serum and phentolamine obliterates pulsatile LH but not FSH secretion in ovariectomized rabbits. Neuroendocrinology 1991; 53: 382–391.
  • 22. Kafa MI, Eyigör Ö. Kisspeptins and Kisspeptin Neurons: Effects on Reproductive System and Hypothalamic Localizations. Uludağ Tıp Fakültesi Dergisi 2011:37 (1) 53-60,
  • 23. Francis Pau KY, Cyrus JL, Cowles A, Yang SP, Hess DL, Spies HG. Possible Involvement of Norepinephrine Transporter Activity in the Pulsatility of Hypothalamic Gonadotropin-Releasing Hormone Release: Influence of the Gonad. Journal of Neuroendocrinology 1998; 10:21–29.
  • 24.Tassigny X, Ackroyd K.J, Chatzidaki E.E, Colledge WH. Kisspeptin Signaling Is Required for Peripheral But Not Central Stimulation of Gonadotropin-Releasing Hormone Neurons by NMDA. The Journal of Neuroscience, June 23, 2010. 30(25):8581– 8590.
  • 25. Gul Z, Buyukuysal MC, Buyukuysal RL. Brain slice viability determined under normoxic and oxidative stress conditions: involvement of slice quantity in the medium. Neurological Research 2020;42:228-238.
  • 26. Gul Z, Demircan C, Bagdas D, Buyukuysal RL. Aging protects rat cortical slices against to oxygen-glucose deprivation induced damage. International Journal of Neuroscience 2020;1-9.
  • 27. Herbison AE. Noradrenergic regulation of cyclic GnRH secretion. Rev Reprod 1997;2(1):1– 6.
  • 28. Helena CVV, Szawka RE, Anselmo-Franci JA. Noradrenaline involvement in the negative-feedback effects of ovarian steroids on luteinising hormone secretion. J Neuroendocrinol 2009;21(10):805–12.
  • 29. Haywood SA, Simonian SX, van der Beek EM, Bicknell RJ, Herbison AE. Fluctuating estrogen and progesterone receptor expression in brainstem norepinephrine neurons through the rat estrous cycle. Endocrinology 1999;140(7):3255–63.
  • 30.Szawka RE, Franci CR, Anselmo-Franci JA. Noradrenaline release in the medial preoptic area during the rat oestrous cycle: temporal relationship with plasma secretory surges of prolactin and luteinising hormone. J Neuroendocrinol 2007;19(5):374–382.
  • 31. Szawka RE, PoletiniMO, Leite CM, et al. Release of norepinephrine in the preoptic area activates anteroventral periventricular nucleus neurons and stimulates the surge of luteinizing hormone. Endocrinology 2013;154(1):363–374.
  • 32. Gnodde HP, Schuiling GA. Involvement of catecholaminergic and cholinergic mechanisms in the pulsatile release of LH in the longterm ovariectomized rat. Neuroendocrinology 1976;20(3):212–23.
  • 33. Kalra PS, Kalra SP, Krulich L, Fawcett CP, McCann SM. Involvement of norepinephrine in transmission of the stimulatory influence of progesterone on gonadotropin release. Endocrinology 1972;90(5):1168–76.
  • 34.Le W, Berghorn KA, Smith MS, Hoffman GE. 1-Adrenergic receptor blockade blocks LH secretion but not LHRH cFos activation. Brain Res 1997;747(96):236–45.
  • 35. Weick RF. Acute effects of adrenergic receptor blocking drugs and neuroleptic agents on pulsatile discharges of luteinizing hormone in the ovariectomized rat. Neuroendocrinology 1978;26(2):108–17.
  • 36. Anselmo-Franci JA, Franci CR, Krulich L, Antunes-Rodrigues J, McCann SM. Locus coeruleus lesions decrease norepinephrine input into the medial preoptic area and medial basal hypothalamus and block the LH, FSH and prolactin preovulatory surge. Brain Res 1997;767(2):289–296.
  • 37. Han S-K, Herbison AE. Norepinephrine suppresses gonadotropin releasing hormone neuron excitability in the adult mouse. Endocrinology 2008;149(3):1129–35.
  • 38. Marraudino M, Miceli D, Farinetti A, Ponti G, Panzica G, Gotti S. Kisspeptin innervation of the hypothalamic paraventricular nucleus: sexual dimorphism and effect of estrous cycle in female mice. J Anat 2017;230:775–86.
  • 39. Navarro VM, Castellano JM, McConkey SM, et al. Interactions between kisspeptin and neurokinin B in the control of GnRH secretion in the female rat. Am J Physiol Endocrinol Metab 2011;300:E202–E210.
  • 40. Padilla SL, Qiu J, Nestor CC, et al. AgRP to Kiss1 neuron signaling links nutritional state and fertility. Proc Natl Acad Sci USA Biol Sci 2017: 201621065.
  • 41.Manfredi-Lozano M, Roa J, Ruiz-Pino F, et al. Defining a novel leptin–melanocortin–kisspeptin pathway involved in the metabolic control of puberty. Mol Metab 2016;5:844–57.
  • 42. Min L, Adeola O, Carroll RS, Kaiser UB. Glutamate Acts as a Cofactor in the Activation of KISS1R by Kisspeptin, Signaling Originating from Membrane Receptors. Endocrine Society 2013; SUN-402-SUN-402.
  • 43. Cheong RY, Czieselsky K, Porteous R, Herbison AE. Expression of ESR1 in glutamatergic and GABAergic neurons is essential for normal puberty onset, estrogen feedback, and fertility in female mice. J Neurosci 2015;35:14533–43.
  • 44. Fernandois D, Na E, Cuevas F, Cruz G, Lara H, Paredes AH. Kisspeptin is involved in ovarian follicular development during aging in rats. J Endocrinol 2016;228:161–70.
  • 45. Fernandois D, Cruz G, Na EK, Lara HE, Paredes AH. Kisspeptin level in the aging ovary is regulated by the sympathetic nervous system. J Endocrinol 2017;232:97–105.
  • 46. Kalil B, Ribeiro AB, Leite CM, et al. The Increase in Signaling by Kisspeptin Neurons in the Preoptic Area and Associated Changes in Clock Gene Expression That Trigger the LH Surge in Female Rats Are Dependent on the Facilitatory Action of a Noradrenaline Input. Endocrinology 2016;157:323–35.
  • 47. Du XJ, Bobik A, Esler MD, Dart MA. Effects of Intracellular Ca2+ Chelating on Noradrenaline Release ın Normoxic and Anoxic Hearts. Clinical and Experimental Pharmacology and Physiology 1997;24:819-23.
  • 48. Lowry OH, Rosebrough NJ, Farr AL. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 1951;193: 265-275.
  • 49. Campbell RE, Herbison AE. Definition of brainstem afferents to gonadotropin-releasing hormone neurons in the mouse using con- ditional viral tract tracing. Endocrinology 2007;148:5884-90.
  • 50. Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci 2015:37:1-20.
  • 51. Demircan C, Gul Z, Buyukuysal RL. High glutamate attenuates S100B and LDH outputs from rat cortical slices enhanced by either oxygen–glucose deprivation or menadione. Neurochemical research 2014:39:1232-1244.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri (Diğer)
Bölüm Özgün Araştırma Makaleleri
Yazarlar

Zülfiye Gül 0000-0002-8872-0074

Levent R. Büyükuysal 0000-0003-0749-2426

Yayımlanma Tarihi 1 Ağustos 2020
Kabul Tarihi 7 Ağustos 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Gül, Z., & Büyükuysal, L. R. (2020). Kisspeptin’in Gelişimsel Döneme Bağlı Olarak Dişi Sıçanlarda Medial Preoptik Bölgede İn Vitro Noradrenalin Salıverilmesi Üzerine Etkisi. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 46(2), 181-188. https://doi.org/10.32708/uutfd.722097
AMA Gül Z, Büyükuysal LR. Kisspeptin’in Gelişimsel Döneme Bağlı Olarak Dişi Sıçanlarda Medial Preoptik Bölgede İn Vitro Noradrenalin Salıverilmesi Üzerine Etkisi. Uludağ Tıp Derg. Ağustos 2020;46(2):181-188. doi:10.32708/uutfd.722097
Chicago Gül, Zülfiye, ve Levent R. Büyükuysal. “Kisspeptin’in Gelişimsel Döneme Bağlı Olarak Dişi Sıçanlarda Medial Preoptik Bölgede İn Vitro Noradrenalin Salıverilmesi Üzerine Etkisi”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 46, sy. 2 (Ağustos 2020): 181-88. https://doi.org/10.32708/uutfd.722097.
EndNote Gül Z, Büyükuysal LR (01 Ağustos 2020) Kisspeptin’in Gelişimsel Döneme Bağlı Olarak Dişi Sıçanlarda Medial Preoptik Bölgede İn Vitro Noradrenalin Salıverilmesi Üzerine Etkisi. Uludağ Üniversitesi Tıp Fakültesi Dergisi 46 2 181–188.
IEEE Z. Gül ve L. R. Büyükuysal, “Kisspeptin’in Gelişimsel Döneme Bağlı Olarak Dişi Sıçanlarda Medial Preoptik Bölgede İn Vitro Noradrenalin Salıverilmesi Üzerine Etkisi”, Uludağ Tıp Derg, c. 46, sy. 2, ss. 181–188, 2020, doi: 10.32708/uutfd.722097.
ISNAD Gül, Zülfiye - Büyükuysal, Levent R. “Kisspeptin’in Gelişimsel Döneme Bağlı Olarak Dişi Sıçanlarda Medial Preoptik Bölgede İn Vitro Noradrenalin Salıverilmesi Üzerine Etkisi”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 46/2 (Ağustos 2020), 181-188. https://doi.org/10.32708/uutfd.722097.
JAMA Gül Z, Büyükuysal LR. Kisspeptin’in Gelişimsel Döneme Bağlı Olarak Dişi Sıçanlarda Medial Preoptik Bölgede İn Vitro Noradrenalin Salıverilmesi Üzerine Etkisi. Uludağ Tıp Derg. 2020;46:181–188.
MLA Gül, Zülfiye ve Levent R. Büyükuysal. “Kisspeptin’in Gelişimsel Döneme Bağlı Olarak Dişi Sıçanlarda Medial Preoptik Bölgede İn Vitro Noradrenalin Salıverilmesi Üzerine Etkisi”. Uludağ Üniversitesi Tıp Fakültesi Dergisi, c. 46, sy. 2, 2020, ss. 181-8, doi:10.32708/uutfd.722097.
Vancouver Gül Z, Büyükuysal LR. Kisspeptin’in Gelişimsel Döneme Bağlı Olarak Dişi Sıçanlarda Medial Preoptik Bölgede İn Vitro Noradrenalin Salıverilmesi Üzerine Etkisi. Uludağ Tıp Derg. 2020;46(2):181-8.

ISSN: 1300-414X, e-ISSN: 2645-9027

Uludağ Üniversitesi Tıp Fakültesi Dergisi "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License" ile lisanslanmaktadır.


Creative Commons License
Journal of Uludag University Medical Faculty is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

2023