Year 2021, Volume 47 , Issue 1, Pages 151 - 158 2021-04-01

Usage of Artificial Intelligence in Public Health
Halk Sağlığında Yapay Zekanın Kullanımı

Halit Emin ALICILAR [1] , Meltem ÇÖL [2]


With the increasing inclusion of technological developments in the health sector, the importance given to artificial intelligence in the field of medicine is increasing. Recent developments are hopeful and exciting in Public Health as in all fields. For the future, the application possibilities of artificial intelligence and especially the potential of big data are quite high. There are many uses for artificial intelligence applications in Public Health such as surveillance systems, epidemiological analysis, determination of health risks, early diagnosis of diseases, epidemic management and vaccine studies. Besides, there are some potential negative consequences of integrating artificial intelligence into modern medicine. The aim of this review is to give information about the concept of artificial intelligence, and to evaluate the uses, potential benefits and aspects that need improvement of artificial intelligence in Public Health through various application examples.
Teknolojik gelişmelerin sağlık sektörüne her geçen gün daha fazla dahil olmasıyla tıp alanında yapay zekaya verilen önem de giderek artmaktadır. Son dönemde yaşanan gelişmeler tüm alanlarda olduğu gibi Halk Sağlığında da umut ve heyecan vericidir. Geleceğe yönelik olarak yapay zekanın uygulama olanakları ve özellikle büyük verinin potansiyeli oldukça büyüktür. Halk Sağlığında yapay zeka uygulamaları için sürveyans sistemleri, epidemiyolojik analizler, sağlık risklerinin saptanması, hastalıkların erken tanısı, salgın yönetimi ve aşı çalışmaları gibi birçok kullanım alanı bulunmaktadır. Bunun yanında yapay zekanın modern tıbba entegre edilmesinin bazı potansiyel olumsuz sonuçları da mevcuttur. Bu derlemenin amacı, yapay zeka kavramı hakkında bilgi vererek çeşitli uygulama örnekleri üzerinden Halk Sağlığında yapay zekanın kullanım alanlarını, potansiyel faydalarını ve geliştirilmesi gereken yönlerini değerlendirmektir.
  • Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.
  • Türk Dil Kurumu. Güncel Türkçe Sözlük. [Erişim Tarihi: 29 Haziran 2020]. Erişim: https://sozluk.gov.tr/
  • Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach. 3. baskı. New Jersey: Prentice Hall; 2009.
  • Bishop C. Pattern Recognition and Machine Learning. Jordan M, Kleinberg J, Scholkopf B, editörler. New York: Springer-Verlag; 2006.
  • Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks. 2015;61:85–117.
  • Houssami N, Lee CI, Buist DSM, Tao D. Artificial intelligence for breast cancer screening: Opportunity or hype? Breast. Aralık 2017;36:31–3.
  • Kantarjian H, Yu PP. Artificial Intelligence, Big Data, and Cancer. JAMA Oncol. Ağustos 2015;1(5):573–4.
  • Thomassin-Naggara I, Balleyguier C, Ceugnart L, Heid P, Lenczner G, Maire A, vd. Artificial intelligence and breast screening: French Radiology Community position paper. Diagn Interv Imaging. Ekim 2019;100(10):553–66.
  • Egger K, Strecker C, Kellner E, Urbach H. Otomatik analiz algoritmaları kullanarak akut iskemik inmede görüntüleme. Nervenarzt. 2018;89(8):885–94.
  • Bhattacharya S, Pradhan KB, Bashar MA, Tripathi S, Semwal J, Marzo RR, vd. Artificial intelligence enabled healthcare: A hype, hope or harm. J Fam Med Prim care. 15 Kasım 2019;8(11):3461–4.
  • Khorrami M, Prasanna P, Gupta A, Patil P, Velu PD, Thawani R, vd. Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non-Small Cell Lung Cancer. Cancer Immunol Res. 2020;8(1):108–19.
  • Tutun S, Irgil S, Yeşilkaya I, Aykaç A, Aras N. WeCureX Intelligent Psychiatric Assistant. Informs 2018 Annual Meeting. Phoenix; 2018.
  • Binaco R, Calzaretto N, Epifano J, McGuire S, Umer M, Emrani S, vd. Machine Learning Analysis of Digital Clock Drawing Test Performance for Differential Classification of Mild Cognitive Impairment Subtypes Versus Alzheimer’s Disease. J Int Neuropsychol Soc. 2020/03/23. 2020;1–11.
  • Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, vd. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol Off J Eur Soc Med Oncol. Ağustos 2018;29(8):1836–42.
  • Schneider F, Weiller C. Big Data and Artificial Intelligence. Nervenarzt. 2018;89(8):859–60.
  • Türkiye Teknoloji Geliştirme Vakfı. Sağlık ve Dijitalleşme. Teknoloji Dosyası 1. Ankara; 2017.
  • Miotto R, Li L, Kidd BA, Dudley JT. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci Rep. 2016;6(1):26094.
  • Liu B, He H, Luo H, Zhang T, Jiang J. Artificial intelligence and big data facilitated targeted drug discovery. Stroke Vasc Neurol. 2019;4(4):206–13.
  • Wakefield J. Artificial intelligence-created medicine to be used on humans for first time. 2020 [Erişim Tarihi: 27 Haziran 2020]. Erişim: https://www.bbc.com/news/technology-51315462
  • Gönel A, Bayraktar N, Koyuncu İ. Yapay Zeka Programı ile Gereksiz Laboratuvar Testlerinin Engellenmesi (Sözel Bildiri). Uluslararası Sağlıkta Yapay Zeka Kongresi. İzmir; 2020.
  • Lu FS, Hattab MW, Clemente CL, Biggerstaff M, Santillana M. Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches. Nat Commun. 2019;10(1):147.
  • Yousefinaghani S, Dara R, Poljak Z, Bernardo TM, Sharif S. The Assessment of Twitter’s Potential for Outbreak Detection: Avian Influenza Case Study. Sci Rep. 2019;9(1):18147.
  • González C, Wang O, Strutz SE, González-Salazar C, Sánchez-Cordero V, Sarkar S. Climate change and risk of leishmaniasis in north america: predictions from ecological niche models of vector and reservoir species. PLoS Negl Trop Dis. 19 Ocak 2010;4(1):e585–e585.
  • Vaishya R, Javaid M, Khan IH, Haleem A. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab Syndr. 2020;14(4):337–9.
  • Topluluğunuzun COVID-19 nedeniyle nasıl farklı hareket ettiğini görün. 2020 [Erişim Tarihi: 06 Haziran 2020]. Erişim: https://www.google.com/covid19/mobility/
  • Pan X-B. Application of personal-oriented digital technology in preventing transmission of COVID-19, China. Ir J Med Sci. 27 Mart 2020;1–2.
  • Lu Wang L, Lo K, Chandrasekhar Y, Reas R, Yang J, Eide D, vd. CORD-19: The Covid-19 Open Research Dataset. ArXiv. 2020.
  • World Health Organization. WHO Health Alert brings COVID-19 facts to billions via WhatsApp. 06.05.2020. [Erişim Tarihi: 28 Haziran 2020]. Erişim: https://www.who.int/news-room/feature-stories/detail/who-health-alert-brings-covid-19-facts-to-billions-via-whatsapp
  • Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, vd. Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis. arXiv Prepr arXiv200305037. 2020;
  • Wang Y, Hu M, Zhou Y, Li Q, Yao N, Zhai G, vd. Unobtrusive and Automatic Classification of Multiple People’s Abnormal Respiratory Patterns in Real Time Using Deep Neural Network and Depth Camera. IEEE Internet Things J. 2020;7(9):8559–71.
  • Alimadadi A, Aryal S, Manandhar I, Munroe PB, Joe B, Cheng X. Artificial intelligence and machine learning to fight COVID-19. Physiol Genomics. 2020/03/27. 01 Nisan 2020;52(4):200–2.
  • Özçelik AE. Çevre Ve Meslek Hastalıkları İçin Akıllı Coğrafi Bilgi Sistemi (Sözel Bildiri). Uluslararası Sağlıkta Yapay Zeka Kongresi. İzmir; 2020.
  • Garimella V, Alfayad A, Weber I. Social Media Image Analysis for Public Health. 2016. 5543–5547 s.
  • Paul M, Dredze M. You Are What Your Tweet: Analyzing Twitter for Public Health. Artif Intell. 01 Ocak 2011;38:265–72.
  • Graham S, Depp C, Lee EE, Nebeker C, Tu X, Kim H-C, vd. Artificial Intelligence for Mental Health and Mental Illnesses: an Overview. Curr Psychiatry Rep. Kasım 2019;21(11):116.
  • Ravì D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, vd. Deep Learning for Health Informatics. IEEE J Biomed Heal Informatics. 2017;21(1):4–21.
  • Poggi M, Mattoccia S. A wearable mobility aid for the visually impaired based on embedded 3D vision and deep learning. Içinde: 2016 IEEE Symposium on Computers and Communication (ISCC). 2016. s. 208–13.
  • Paparrizos J, White RW, Horvitz E. Screening for Pancreatic Adenocarcinoma Using Signals From Web Search Logs: Feasibility Study and Results. J Oncol Pract. Ağustos 2016;12(8):737–44.
  • Liyanage H, Liaw S-T, Jonnagaddala J, Schreiber R, Kuziemsky C, Terry AL, vd. Artificial Intelligence in Primary Health Care: Perceptions, Issues, and Challenges. Yearb Med Inform. Ağustos 2019;28(1):41–6.
  • O’Dowd A. Government pins hopes on £250m AI centre for faster diagnosis and treatment. BMJ. 09 Ağustos 2019;366:l5106.
  • Sağlık Bakanlığı. Proje Geliştirme Dairesi Başkanlığı Görev ve Sorumlulukları. 2020 [Erişim Tarihi: 28 Haziran 2020]. Erişim: https://sbsgm.saglik.gov.tr/TR,12828/proje-gelistirme-dairesi-baskanligi.html
  • Karaaslan YS, Yener D. Sağlık Bakanlığından “Yapay Zeka Enstitüsü”. 23.12.2019. [Erişim Tarihi: 27 Haziran 2020]. Erişim: https://www.aa.com.tr/tr/saglik/saglik-bakanligindan-yapay-zeka-enstitusu/1681402
  • Rodríguez-González A, Zanin M, Menasalvas-Ruiz E. Public Health and Epidemiology Informatics: Can Artificial Intelligence Help Future Global Challenges? An Overview of Antimicrobial Resistance and Impact of Climate Change in Disease Epidemiology. Yearb Med Inform. Ağustos 2019;28(1):224–31.
  • Eskiocak M. Koronavirüs Pandemisi, Salgın Yönetimi, Dijital İzleme ve Endişe. Hekim Postası Haziran 2020 Korona Pandemisi Özel. [Erişim Tarihi: 28 Haziran 2020]. Erişim: https://ato.org.tr/hekim_postasi_arsiv/2020/hp_pandemi_ozel2.pdf
  • Vayena E, Dzenowagis J, Brownstein JS, Sheikh A. Policy implications of big data in the health sector. 2017 [Erişim Tarihi: 28 Haziran 2020]. Erişim: https://www.who.int/bulletin/volumes/96/1/17-197426/en/
  • World Health Organization. Big data and artificial intelligence. [Erişim Tarihi: 28 Haziran 2020]. Erişim: https://www.who.int/ethics/topics/big-data-artificial-intelligence/en/
  • Campolo A, Sanfilippo M, Whittaker M, Crawford K. AI Now 2017 Report. Selbst A, Barocas S, editörler. New York; 2017.
  • Şemin S. Tıbbi teknoloji, hekimler ve etik. Içinde: Sağlık Hizmetlerinde Teknoloji. Ankara: Türk Tabipleri Birliği; 1999. s. 45.
  • International Bioethics Committee. Report of the IBC on big data and health. Paris; 2017.
  • Lau AYS, Staccini P. Artificial Intelligence in Health: New Opportunities, Challenges, and Practical Implications. Yearb Med Inform. Ağustos 2019;28(1):174–8.
Primary Language tr
Subjects Public Environmental and Occupational Health
Journal Section Collection
Authors

Orcid: 0000-0002-6342-9707
Author: Halit Emin ALICILAR (Primary Author)
Institution: Ankara Üniversitesi Tıp Fakültesi, Halk Sağlığı Anabilim Dalı, Ankara.
Country: Turkey


Orcid: 0000-0001-7089-1644
Author: Meltem ÇÖL
Institution: Ankara Üniversitesi Tıp Fakültesi, Halk Sağlığı Anabilim Dalı, Ankara.
Country: Turkey


Dates

Publication Date : April 1, 2021

Bibtex @review { uutfd891274, journal = {Uludağ Üniversitesi Tıp Fakültesi Dergisi}, issn = {1300-414X}, eissn = {2645-9027}, address = {Uludağ Üniversitesi Tıp Fakültesi Dekanlığı, Görükle Kampüsü 16059, Nilüfer, BURSA}, publisher = {Bursa Uludağ University}, year = {2021}, volume = {47}, pages = {151 - 158}, doi = {10.32708/uutfd.891274}, title = {Halk Sağlığında Yapay Zekanın Kullanımı}, key = {cite}, author = {Alıcılar, Halit Emin and Çöl, Meltem} }
APA Alıcılar, H , Çöl, M . (2021). Halk Sağlığında Yapay Zekanın Kullanımı . Uludağ Üniversitesi Tıp Fakültesi Dergisi , 47 (1) , 151-158 . DOI: 10.32708/uutfd.891274
MLA Alıcılar, H , Çöl, M . "Halk Sağlığında Yapay Zekanın Kullanımı" . Uludağ Üniversitesi Tıp Fakültesi Dergisi 47 (2021 ): 151-158 <https://dergipark.org.tr/en/pub/uutfd/issue/61997/891274>
Chicago Alıcılar, H , Çöl, M . "Halk Sağlığında Yapay Zekanın Kullanımı". Uludağ Üniversitesi Tıp Fakültesi Dergisi 47 (2021 ): 151-158
RIS TY - JOUR T1 - Halk Sağlığında Yapay Zekanın Kullanımı AU - Halit Emin Alıcılar , Meltem Çöl Y1 - 2021 PY - 2021 N1 - doi: 10.32708/uutfd.891274 DO - 10.32708/uutfd.891274 T2 - Uludağ Üniversitesi Tıp Fakültesi Dergisi JF - Journal JO - JOR SP - 151 EP - 158 VL - 47 IS - 1 SN - 1300-414X-2645-9027 M3 - doi: 10.32708/uutfd.891274 UR - https://doi.org/10.32708/uutfd.891274 Y2 - 2021 ER -
EndNote %0 Uludağ Üniversitesi Tıp Fakültesi Dergisi Halk Sağlığında Yapay Zekanın Kullanımı %A Halit Emin Alıcılar , Meltem Çöl %T Halk Sağlığında Yapay Zekanın Kullanımı %D 2021 %J Uludağ Üniversitesi Tıp Fakültesi Dergisi %P 1300-414X-2645-9027 %V 47 %N 1 %R doi: 10.32708/uutfd.891274 %U 10.32708/uutfd.891274
ISNAD Alıcılar, Halit Emin , Çöl, Meltem . "Halk Sağlığında Yapay Zekanın Kullanımı". Uludağ Üniversitesi Tıp Fakültesi Dergisi 47 / 1 (April 2021): 151-158 . https://doi.org/10.32708/uutfd.891274
AMA Alıcılar H , Çöl M . Halk Sağlığında Yapay Zekanın Kullanımı. Uludağ Tıp Derg. 2021; 47(1): 151-158.
Vancouver Alıcılar H , Çöl M . Halk Sağlığında Yapay Zekanın Kullanımı. Uludağ Üniversitesi Tıp Fakültesi Dergisi. 2021; 47(1): 151-158.
IEEE H. Alıcılar and M. Çöl , "Halk Sağlığında Yapay Zekanın Kullanımı", Uludağ Üniversitesi Tıp Fakültesi Dergisi, vol. 47, no. 1, pp. 151-158, Apr. 2021, doi:10.32708/uutfd.891274