Derleme
BibTex RIS Kaynak Göster

Göz İçi Lens Materyallerin Oftalmoloji Alanında Yolculuğu ve Modern Cerrahideki Yeri

Yıl 2024, Cilt: 50 Sayı: 3, 565 - 572, 12.01.2025
https://doi.org/10.32708/uutfd.1531821

Öz

Katarakt, önlenebilir önemli bir sağlık sorunudur. Katarakt cerrahisinde kullanılan göz içi lensler (GİL'ler), cerrahi sonrası görme kalitesini artırmak için önemli bir role sahiptir. Katarakt cerrahisi sırasında göz içine konulan lensler (GİL) çeşitli materyallerden yapılmaktadır. Başlangıçta polimetilmetakrilat (PMMA) malzemesinden yapılan GİL'ler, zamanla silikon ve akrilik gibi daha gelişmiş materyallerle yer değiştirmiştir. GİL'ler, biyouyumluluk, optik performans ve hasta konforu açısından sürekli olarak geliştirilmektedir. Ayrıca, multifokal, akomodatif ve ayarlanabilir lensler gibi yeni teknolojilerle, farklı mesafelerde net görme sağlanması hedeflenmektedir. Bu makalede, GİL'lerin gelişimi, mevcut durumu, kullanılan materyallerin özellikleri ve bu lenslerin sınıflandırılması üzerinde durulmuştur.

Etik Beyan

Yazıda etik kurul onayı ihtiyacı yoktur

Kaynakça

  • 1. https://www.emro.who.int/health-topics/cataract/.
  • 2. Steinmetz JD, Bourne RR, Briant PS, Flaxman SR, Taylor HR, Jonas JB, Abdoli AA, Abrha WA, Abualhasan A, Abu-Gharbieh EG AT. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. The Lancet Global Health. 2021;9(2):e144-.
  • 3. Ridley H. Intraocular acrylic lenses: a recent development in the surgery of cataract. The British journal of ophthalmology. 1952;36(3):113.
  • 4. AKINGÖL Z, ŞENCAN S. Multifokal göz içi lenslerinin tarihçesi. Turkiye Klin Ophthalmol Top. 2019;12(1):1–5.
  • 5. Čanović S, Konjevoda S, Pavičić AD SR. Intraocular Lens (IOL) Materials. InIntraocular Lens 2019 20. IntechOpen.
  • 6. O’dwyer PA, YA A. Temel göz hastalıkları. Baskı Ankara Güneş Tıp Kitabevleri. 2015;677–85.
  • 7. Dick HB GR. Future intraocular lens technologies. Ophthalmology. 2021;128(11):e206-13.
  • 8. Tripti D, Haldar RS, Geetha S, Niyogi UK KR. Materials for intraocular lenses (IOLs): Review of developments to achieve biocompatibility. e-Polymers. 2009;9(1):124.
  • 9. Özyol P, Özyol E KF. Biocompatibility of intraocular lenses. Turkish journal of ophthalmology. 2017;47(4):221.
  • 10. Topete A, Saramago B SA. Intraocular lenses as drug delivery devices. International journal of pharmaceutics. 2021;602:120613.
  • 11. Downes SM. Ultraviolet or blue-filtering intraocular lenses: what is the evidence?. Eye. 2016;30(2):215-21.
  • 12. Luo C, Wang H, Chen X, Xu J, Yin H YK. Recent advances of intraocular lens materials and surface modification in cataract surgery. Frontiers in Bioengineering and Biotechnology. 2022;10:913383.
  • 13. Wang R, Xia J, Tang J et al. Surface Modification of Intraocular Lens with Hydrophilic Poly(Sulfobetaine Methacrylate) Brush for Posterior Capsular Opacification Prevention. J Ocul Pharmacol Ther. 2021;37(2):172-180.
  • 14. Zhao H MM. The effect of chromatic dispersion on pseudophakic optical performance. Br J Ophthalmol. 2007;91(9):1225-1229.
  • 15. Schuster AK, Tesarz J VU. The Impact on Vision of Aspheric to Spherical Monofocal Intraocular Lenses in Cataract Surgery: A Systematic Review with Meta-analysis. Ophthalmology. 2013;120(11):2166-2175.
  • 16. Kapoor S GS. Basic science of intraocular lens materials. Intraocular Lens. 2020.18:3.
  • 17. S. A. Newer intraocular lens materials and design. Journal of Clinical Ophthalmology and Research. 2013;1(2):113-7.
  • 18. Xu J, Zhu W, Jiang L, Xu J, Zhang Y CY. Carbazole-grafted silicone hydrogel with a high refractive index for intraocular lens. RSC advances. 2015;5(89):72736-44.
  • 19. Werner L. Intraocular lenses: overview of designs, materials, and pathophysiologic features. Ophthalmology. 2021;128(11):e74-93.
  • 20. Olson RJ, Mamalis N, Werner L AD. Cataract treatment in the beginning of the 21st century. American journal of ophthalmology. 2003;136(1):146-54.
  • 21. Miyata A YS. Equilibrium water content and glistenings in acrylic intraocular lenses. Journal of Cataract & Refractive Surgery. 2004;30(8):1768-72.
  • 22. Kohnen T KO. Intraocular lenses for microincisional cataract surgery. Der Ophthalmologe. 2010;107:127-35.
  • 23. Abela-Formanek C, Amon M, Kahraman G, Schauersberger J DR. Biocompatibility of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses in eyes with uveitis having cataract surgery: Long-term follow-up. Journal of Cataract & Refractive Surgery. 2011;37(1):104-12.
  • 24. Werner L, Thatthamla I, Ong M et al. Evaluation of clarity characteristics in a new hydrophobic acrylic IOL in compari- son to commercially available IOLs. J Cataract Refract Surg.2019;45(10):1490e1497.
  • 25. Nibourg LM, Gelens E, Kuijer R, Hooymans JM, van Kooten TG KS. Prevention of posterior capsular opacification. Experimental eye research. 2015;136:100-15.
  • 26. Tetz M JM. New hydrophobic IOL materials and understanding the science of glistenings. Current eye research. 2015;40(10):969-81.
  • 27. Fernández-Vigo JI, González-Peramato MS, Gómez-de-Liaño CN, Sánchez-Guillén I, Fernández-Vigo JÁ M-MA. Glistening on intraocular lenses: A review. Archivos de la Sociedad Española de Oftalmología (English Edition). 2023.
  • 28. Karel F, Turaçlı E, Arslanpençe A, Atilla H DS. Fakoemülsifikasyon ve Memory Lens Uygulamalarımız. Turkiye Klinikleri Journal of Ophthalmology. 1999;8(1):52-5.
  • 29. Hoffer KJ SG. Multifocal intraocular lenses: historical perspective. In: Multifocal Intraocular Lenses: The Art and the Practice. Cham: Springer; 2019:9-30.
  • 30. Xu X, Zhu MM ZH. Refractive versus diffractive multifocal intraocular lenses in cataract surgery: a meta-analysis of randomized controlled trials. J Refract Surg. 2014;30(9):634-644.
  • 31. Artigas JM, Menezo JL, Peris C, Felipe A D-LM. Image quality with multifocal intraocular lenses and the effect of pupil size: comparison of refractive and hybrid refractive-diffractive designs. J Cataract Refract Surg. 2007;33(12):2111-2117.
  • 32. Doroodgar F, Niazi F, Sanginabadi A et al. Visual performance of four types of diffractive multifocal intraocular lenses and a review of articles. Int J Ophthalmol. 2021;14(3):356-365.
  • 33. Karayilan, M., Clamen, L., and Becker ML. Polymeric Materials for Eye Surface and Intraocular Applications. Biomacromolecules.2021; 22, 223–261.
  • 34. Koopmans SA, Terwee T, Barkhof J, Haitjema HJ KA. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes. Invest Ophthalmol Vis Sci. 2003;44(1):250-257.
  • 35. Chang DF. Disruptive Innovation and Refractive IOLs: How the Game Will Change with Adjustable IOLs. Asia-Pacific J Ophthalmol. 2019;8(6):432-435.
  • 36. Villegas EA, Alcon E, Rubio E, Marin JM AP. Refractive Accuracy with Light-Adjustable Intraocular Lenses. J Cataract Refract Surg. 2014;40(6):1075-1084.e2.
  • 37. Schraub M HN. Smart Polymers Containing Substituted Coumarin Side Groups Enable Photo-Induced Tuning of Focal Length of Intraocular Lenses. Ophthalmic Technol. 2011;21(7885):78851Z.
  • 38. Jellali R, Bertrand V, Alexandre M et al. Photoreversibility and Biocompatibility of Polydimethylsiloxane-Coumarin as Adjustable Intraocular Lens Material. Macromol Biosci. 2017;17(5).

The Journey of Intraocular Lens Materials in Ophthalmology and Their Place in Modern Surgery

Yıl 2024, Cilt: 50 Sayı: 3, 565 - 572, 12.01.2025
https://doi.org/10.32708/uutfd.1531821

Öz

Cataracts are preventable and important health problems. Intraocular lenses (IOLs) used in cataract surgery play an important role in improving vision quality after surgery. Lenses (IOLs) placed in the eye during cataract surgery are made of various materials. Initially made of polymethylmethacrylate (PMMA), IOLs have been replaced with more advanced materials such as silicone and acrylic over time. IOLs are constantly improving in terms of biocompatibility, optical performance, and patient comfort. In addition, new technologies, such as multifocal, accommodative, and adjustable lenses, aim to provide clear vision at different distances. This article focuses on the development of IOLs, their current status, properties of the materials used, and classification of these lenses.

Etik Beyan

There is no need for ethics committee approval in the study.

Kaynakça

  • 1. https://www.emro.who.int/health-topics/cataract/.
  • 2. Steinmetz JD, Bourne RR, Briant PS, Flaxman SR, Taylor HR, Jonas JB, Abdoli AA, Abrha WA, Abualhasan A, Abu-Gharbieh EG AT. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. The Lancet Global Health. 2021;9(2):e144-.
  • 3. Ridley H. Intraocular acrylic lenses: a recent development in the surgery of cataract. The British journal of ophthalmology. 1952;36(3):113.
  • 4. AKINGÖL Z, ŞENCAN S. Multifokal göz içi lenslerinin tarihçesi. Turkiye Klin Ophthalmol Top. 2019;12(1):1–5.
  • 5. Čanović S, Konjevoda S, Pavičić AD SR. Intraocular Lens (IOL) Materials. InIntraocular Lens 2019 20. IntechOpen.
  • 6. O’dwyer PA, YA A. Temel göz hastalıkları. Baskı Ankara Güneş Tıp Kitabevleri. 2015;677–85.
  • 7. Dick HB GR. Future intraocular lens technologies. Ophthalmology. 2021;128(11):e206-13.
  • 8. Tripti D, Haldar RS, Geetha S, Niyogi UK KR. Materials for intraocular lenses (IOLs): Review of developments to achieve biocompatibility. e-Polymers. 2009;9(1):124.
  • 9. Özyol P, Özyol E KF. Biocompatibility of intraocular lenses. Turkish journal of ophthalmology. 2017;47(4):221.
  • 10. Topete A, Saramago B SA. Intraocular lenses as drug delivery devices. International journal of pharmaceutics. 2021;602:120613.
  • 11. Downes SM. Ultraviolet or blue-filtering intraocular lenses: what is the evidence?. Eye. 2016;30(2):215-21.
  • 12. Luo C, Wang H, Chen X, Xu J, Yin H YK. Recent advances of intraocular lens materials and surface modification in cataract surgery. Frontiers in Bioengineering and Biotechnology. 2022;10:913383.
  • 13. Wang R, Xia J, Tang J et al. Surface Modification of Intraocular Lens with Hydrophilic Poly(Sulfobetaine Methacrylate) Brush for Posterior Capsular Opacification Prevention. J Ocul Pharmacol Ther. 2021;37(2):172-180.
  • 14. Zhao H MM. The effect of chromatic dispersion on pseudophakic optical performance. Br J Ophthalmol. 2007;91(9):1225-1229.
  • 15. Schuster AK, Tesarz J VU. The Impact on Vision of Aspheric to Spherical Monofocal Intraocular Lenses in Cataract Surgery: A Systematic Review with Meta-analysis. Ophthalmology. 2013;120(11):2166-2175.
  • 16. Kapoor S GS. Basic science of intraocular lens materials. Intraocular Lens. 2020.18:3.
  • 17. S. A. Newer intraocular lens materials and design. Journal of Clinical Ophthalmology and Research. 2013;1(2):113-7.
  • 18. Xu J, Zhu W, Jiang L, Xu J, Zhang Y CY. Carbazole-grafted silicone hydrogel with a high refractive index for intraocular lens. RSC advances. 2015;5(89):72736-44.
  • 19. Werner L. Intraocular lenses: overview of designs, materials, and pathophysiologic features. Ophthalmology. 2021;128(11):e74-93.
  • 20. Olson RJ, Mamalis N, Werner L AD. Cataract treatment in the beginning of the 21st century. American journal of ophthalmology. 2003;136(1):146-54.
  • 21. Miyata A YS. Equilibrium water content and glistenings in acrylic intraocular lenses. Journal of Cataract & Refractive Surgery. 2004;30(8):1768-72.
  • 22. Kohnen T KO. Intraocular lenses for microincisional cataract surgery. Der Ophthalmologe. 2010;107:127-35.
  • 23. Abela-Formanek C, Amon M, Kahraman G, Schauersberger J DR. Biocompatibility of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses in eyes with uveitis having cataract surgery: Long-term follow-up. Journal of Cataract & Refractive Surgery. 2011;37(1):104-12.
  • 24. Werner L, Thatthamla I, Ong M et al. Evaluation of clarity characteristics in a new hydrophobic acrylic IOL in compari- son to commercially available IOLs. J Cataract Refract Surg.2019;45(10):1490e1497.
  • 25. Nibourg LM, Gelens E, Kuijer R, Hooymans JM, van Kooten TG KS. Prevention of posterior capsular opacification. Experimental eye research. 2015;136:100-15.
  • 26. Tetz M JM. New hydrophobic IOL materials and understanding the science of glistenings. Current eye research. 2015;40(10):969-81.
  • 27. Fernández-Vigo JI, González-Peramato MS, Gómez-de-Liaño CN, Sánchez-Guillén I, Fernández-Vigo JÁ M-MA. Glistening on intraocular lenses: A review. Archivos de la Sociedad Española de Oftalmología (English Edition). 2023.
  • 28. Karel F, Turaçlı E, Arslanpençe A, Atilla H DS. Fakoemülsifikasyon ve Memory Lens Uygulamalarımız. Turkiye Klinikleri Journal of Ophthalmology. 1999;8(1):52-5.
  • 29. Hoffer KJ SG. Multifocal intraocular lenses: historical perspective. In: Multifocal Intraocular Lenses: The Art and the Practice. Cham: Springer; 2019:9-30.
  • 30. Xu X, Zhu MM ZH. Refractive versus diffractive multifocal intraocular lenses in cataract surgery: a meta-analysis of randomized controlled trials. J Refract Surg. 2014;30(9):634-644.
  • 31. Artigas JM, Menezo JL, Peris C, Felipe A D-LM. Image quality with multifocal intraocular lenses and the effect of pupil size: comparison of refractive and hybrid refractive-diffractive designs. J Cataract Refract Surg. 2007;33(12):2111-2117.
  • 32. Doroodgar F, Niazi F, Sanginabadi A et al. Visual performance of four types of diffractive multifocal intraocular lenses and a review of articles. Int J Ophthalmol. 2021;14(3):356-365.
  • 33. Karayilan, M., Clamen, L., and Becker ML. Polymeric Materials for Eye Surface and Intraocular Applications. Biomacromolecules.2021; 22, 223–261.
  • 34. Koopmans SA, Terwee T, Barkhof J, Haitjema HJ KA. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes. Invest Ophthalmol Vis Sci. 2003;44(1):250-257.
  • 35. Chang DF. Disruptive Innovation and Refractive IOLs: How the Game Will Change with Adjustable IOLs. Asia-Pacific J Ophthalmol. 2019;8(6):432-435.
  • 36. Villegas EA, Alcon E, Rubio E, Marin JM AP. Refractive Accuracy with Light-Adjustable Intraocular Lenses. J Cataract Refract Surg. 2014;40(6):1075-1084.e2.
  • 37. Schraub M HN. Smart Polymers Containing Substituted Coumarin Side Groups Enable Photo-Induced Tuning of Focal Length of Intraocular Lenses. Ophthalmic Technol. 2011;21(7885):78851Z.
  • 38. Jellali R, Bertrand V, Alexandre M et al. Photoreversibility and Biocompatibility of Polydimethylsiloxane-Coumarin as Adjustable Intraocular Lens Material. Macromol Biosci. 2017;17(5).
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Göz Hastalıkları
Bölüm Derleme Makaleler
Yazarlar

Murat Erdağ 0000-0001-8857-994X

Mehmet Çıtırık 0000-0002-0558-5576

Yayımlanma Tarihi 12 Ocak 2025
Gönderilme Tarihi 12 Ağustos 2024
Kabul Tarihi 17 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 50 Sayı: 3

Kaynak Göster

APA Erdağ, M., & Çıtırık, M. (2025). Göz İçi Lens Materyallerin Oftalmoloji Alanında Yolculuğu ve Modern Cerrahideki Yeri. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 50(3), 565-572. https://doi.org/10.32708/uutfd.1531821
AMA Erdağ M, Çıtırık M. Göz İçi Lens Materyallerin Oftalmoloji Alanında Yolculuğu ve Modern Cerrahideki Yeri. Uludağ Tıp Derg. Ocak 2025;50(3):565-572. doi:10.32708/uutfd.1531821
Chicago Erdağ, Murat, ve Mehmet Çıtırık. “Göz İçi Lens Materyallerin Oftalmoloji Alanında Yolculuğu Ve Modern Cerrahideki Yeri”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 50, sy. 3 (Ocak 2025): 565-72. https://doi.org/10.32708/uutfd.1531821.
EndNote Erdağ M, Çıtırık M (01 Ocak 2025) Göz İçi Lens Materyallerin Oftalmoloji Alanında Yolculuğu ve Modern Cerrahideki Yeri. Uludağ Üniversitesi Tıp Fakültesi Dergisi 50 3 565–572.
IEEE M. Erdağ ve M. Çıtırık, “Göz İçi Lens Materyallerin Oftalmoloji Alanında Yolculuğu ve Modern Cerrahideki Yeri”, Uludağ Tıp Derg, c. 50, sy. 3, ss. 565–572, 2025, doi: 10.32708/uutfd.1531821.
ISNAD Erdağ, Murat - Çıtırık, Mehmet. “Göz İçi Lens Materyallerin Oftalmoloji Alanında Yolculuğu Ve Modern Cerrahideki Yeri”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 50/3 (Ocak 2025), 565-572. https://doi.org/10.32708/uutfd.1531821.
JAMA Erdağ M, Çıtırık M. Göz İçi Lens Materyallerin Oftalmoloji Alanında Yolculuğu ve Modern Cerrahideki Yeri. Uludağ Tıp Derg. 2025;50:565–572.
MLA Erdağ, Murat ve Mehmet Çıtırık. “Göz İçi Lens Materyallerin Oftalmoloji Alanında Yolculuğu Ve Modern Cerrahideki Yeri”. Uludağ Üniversitesi Tıp Fakültesi Dergisi, c. 50, sy. 3, 2025, ss. 565-72, doi:10.32708/uutfd.1531821.
Vancouver Erdağ M, Çıtırık M. Göz İçi Lens Materyallerin Oftalmoloji Alanında Yolculuğu ve Modern Cerrahideki Yeri. Uludağ Tıp Derg. 2025;50(3):565-72.

ISSN: 1300-414X, e-ISSN: 2645-9027

Uludağ Üniversitesi Tıp Fakültesi Dergisi "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License" ile lisanslanmaktadır.


Creative Commons License
Journal of Uludag University Medical Faculty is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

2023