Research Article
BibTex RIS Cite

Yapay Zeka Destekli Otonom Sistemler ve Güvenlik Sorunları

Year 2025, Volume: 9 Issue: 1, 1 - 9, 30.06.2025
https://doi.org/10.33461/uybisbbd.1600576

Abstract

Bu çalışma, yapay zeka destekli otonom sistemlerin güvenlik açıklarını ve bu sistemlerin karşı karşıya kaldığı tehditleri incelemektedir. Otonom araçlar, insansız hava araçları ve robotik sistemler gibi yapay zeka tabanlı otonom sistemler, çeşitli sektörlerde hızla yaygınlaşmaktadır. Ancak, bu sistemlerin güvenliği büyük bir endişe kaynağıdır. Bu çalışma, adversarial saldırılar, veri manipülasyonu ve siber saldırılar gibi tehditlere karşı otonom sistemlerin dayanıklılığını değerlendirmektedir. Literatür taramaları genişletilerek daha güncel ve kapsamlı çalışmalar incelenmiş, ilgili alanlara dair ek kaynaklar eklenmiştir. Simülasyon ortamında gerçekleştirilen testlerde, bu tehditlerin sistem performansına etkileri detaylı olarak analiz edilmiştir. Bulgular, adversarial saldırıların yapay zeka sistemlerinin performansını %40 oranında düşürebildiğini ve veri manipülasyonunun sensör güvenliği açısından ciddi riskler oluşturduğunu göstermiştir. İstatistiksel analizler bölümünde, elde edilen verilerin nasıl değerlendirildiği daha ayrıntılı şekilde açıklanmıştır. T-testi iki grup arasındaki farkların analizinde, Anova testi ise birden fazla grubun karşılaştırılmasında kullanılmıştır. Ayrıca, simülasyonlar sırasında kullanılan veriler, model eğitim süreçleri ve analiz metodolojisi detaylandırılmıştır. Çalışmada, blok zinciri tabanlı güvenlik çözümlerinin uygulanabilirliği değerlendirilmiş ve mevcut yöntemlere kıyasla avantajları ortaya konmuştur. Bu çalışma, literatürdeki mevcut çalışmaların aksine, otonom sistemlerin farklı saldırı türlerine karşı dayanıklılığını istatistiksel analizler ve simülasyon sonuçlarıyla destekleyerek kapsamlı bir inceleme sunmaktadır.

References

  • Alsaade, F. W., & Al-Adhaileh, M. H. (2023). Cyber Attack Detection for Self-Driving Vehicle Networks Using Deep Autoencoder Algorithms. Sensors, 23(8), 4086. https://doi.org/10.3390/s23084086
  • Bernstein, D.J., Heninger, N., Lou, P., Valenta, L. (2017). Post-quantum RSA. In: Lange, T., Takagi, T. (eds) Post- Quantum Cryptography . PQCrypto 2017. Lecture Notes in Computer Science(), vol 10346. Springer, Cham. https://doi.org/10.1007/978-3-319-59879-6_18
  • De Lucia, M.J., Srinivasan, A. (2024). Artificial Intelligence and Machine Learning for Network Security: Quo Vadis?. In: Chen, Y., Wu, J., Yu, P., Wang, X. (eds) Network Security Empowered by Artificial Intelligence. Advances in Information Security, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-031-53510-9_3
  • Goodall, N.J. (2014). Machine Ethics and Automated Vehicles. In: Meyer, G., Beiker, S. (eds) Road Vehicle Automation. Lecture Notes in Mobility. Springer, Cham. https://doi.org/10.1007/978-3-319-05990-7_9
  • Hataba, M., Sherif, A., Mahmoud, M., Abdallah, M. M., & Alasmary, W. (2022). Security and Privacy Issues in Autonomous Vehicles: A Layer-Based Survey. IEEE Open Journal of the Communications Society. 3. 1-1. https://doi.org/10.1109/OJCOMS.2022.3169500
  • Kurakin, A., Goodfellow, I., & Bengio, S. (2017). Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533. https://doi.org/10.48550/arXiv.1607.02533
  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Bitcoin.org, 1-9.
  • OpenAI. (2024). ChatGPT (Sürüm 4o) [Yazılım]. https://openai.com
  • Scherer, M. U. (2016). Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. Harvard Journal of Law & Technology, 29(2), 354-400. https://doi.org/10.2139/ssrn.2609777
  • Silverman, D. (2019). Doing qualitative research. SAGE Publications.

Artificial Intelligence-Supported Autonomous Systems and Security Issues

Year 2025, Volume: 9 Issue: 1, 1 - 9, 30.06.2025
https://doi.org/10.33461/uybisbbd.1600576

Abstract

This study examines the vulnerabilities of AI-supported autonomous systems and the threats these systems face. AI-based autonomous systems such as autonomous vehicles, unmanned aerial vehicles, and robotic systems are rapidly becoming widespread in various sectors. However, the security of these systems is a major concern. This study evaluates the resilience of autonomous systems against threats such as adversarial attacks, data manipulation, and cyber attacks. The literature review was expanded, more up-to-date and comprehensive studies were examined, and additional resources on relevant areas were added. In the tests conducted in the simulation environment, the effects of these threats on system performance were analyzed in detail. The findings showed that adversarial attacks can reduce the performance of AI systems by 40% and that data manipulation poses serious risks to sensor security. In the statistical analysis section, how the obtained data were evaluated is explained in more detail. T-test was used to analyze the differences between two groups, and Anova test was used to compare more than one group. In addition, the data used during the simulations, model training processes, and analysis methodology were detailed. In the study, the applicability of blockchain-based security solutions was evaluated and their advantages compared to existing methods were revealed. Unlike existing studies in the literature, this study provides a comprehensive review of the resilience of autonomous systems against different types of attacks, supported by statistical analysis and simulation results.

References

  • Alsaade, F. W., & Al-Adhaileh, M. H. (2023). Cyber Attack Detection for Self-Driving Vehicle Networks Using Deep Autoencoder Algorithms. Sensors, 23(8), 4086. https://doi.org/10.3390/s23084086
  • Bernstein, D.J., Heninger, N., Lou, P., Valenta, L. (2017). Post-quantum RSA. In: Lange, T., Takagi, T. (eds) Post- Quantum Cryptography . PQCrypto 2017. Lecture Notes in Computer Science(), vol 10346. Springer, Cham. https://doi.org/10.1007/978-3-319-59879-6_18
  • De Lucia, M.J., Srinivasan, A. (2024). Artificial Intelligence and Machine Learning for Network Security: Quo Vadis?. In: Chen, Y., Wu, J., Yu, P., Wang, X. (eds) Network Security Empowered by Artificial Intelligence. Advances in Information Security, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-031-53510-9_3
  • Goodall, N.J. (2014). Machine Ethics and Automated Vehicles. In: Meyer, G., Beiker, S. (eds) Road Vehicle Automation. Lecture Notes in Mobility. Springer, Cham. https://doi.org/10.1007/978-3-319-05990-7_9
  • Hataba, M., Sherif, A., Mahmoud, M., Abdallah, M. M., & Alasmary, W. (2022). Security and Privacy Issues in Autonomous Vehicles: A Layer-Based Survey. IEEE Open Journal of the Communications Society. 3. 1-1. https://doi.org/10.1109/OJCOMS.2022.3169500
  • Kurakin, A., Goodfellow, I., & Bengio, S. (2017). Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533. https://doi.org/10.48550/arXiv.1607.02533
  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Bitcoin.org, 1-9.
  • OpenAI. (2024). ChatGPT (Sürüm 4o) [Yazılım]. https://openai.com
  • Scherer, M. U. (2016). Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. Harvard Journal of Law & Technology, 29(2), 354-400. https://doi.org/10.2139/ssrn.2609777
  • Silverman, D. (2019). Doing qualitative research. SAGE Publications.
There are 10 citations in total.

Details

Primary Language Turkish
Subjects Artificial Intelligence (Other)
Journal Section Research Paper
Authors

Kadir Turgut 0000-0002-8577-0500

Publication Date June 30, 2025
Submission Date December 12, 2024
Acceptance Date March 12, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Turgut, K. (2025). Yapay Zeka Destekli Otonom Sistemler ve Güvenlik Sorunları. International Journal of Management Information Systems and Computer Science, 9(1), 1-9. https://doi.org/10.33461/uybisbbd.1600576