Review
BibTex RIS Cite

Koronavirüs (COVİD-19) ve Sinir Sistemi; Bilinenlerin Ötesinde

Year 2020, Volume: 1 Issue: 2, 58 - 66, 01.06.2020

Abstract

Son yirmi yılda farklı formlarda karşımıza çıkan korona virüsler, hafif soğuk algınlığından şiddetli vakalara neden olabilen bir virüs ailesidir. Son olarak 2019 yılının sonlarında ortaya çıkan yeni tip korona virüs (Covid-19, 2019-nCoV, SARS-CoV2) oldukça bulaşıcı özelliğe sahiptir. Mortalite oranı düşük, morbidite oranı ise yüksektir. Bu güne kadar yaklaşık 17 milyon vakanın görülmesine ve 700 bin kadar ise ölüme neden olmuştur. Korona virüsler tek sarmallı RNA genomuna sahip zarflı virüslerdir. Genetik ve antijenik özelliklerine dayanarak dört alt gruba ayrılır. Alfa-coronavirüsler, Beta-coronavirüsler, Delta-coronavirüsler ve Gama-coronavirüsler. SARS-CoV2’nin hedef reseptörü ACE2 enzimidir. ACE2 enzimi; vücutta yaygın olarak akciğerler, kardiyovasküler sistem, böbrekler, sinir sistemi ve kılcal damar endoteli dahil birçok dokuda eksprese edilir. Dolayısı ile kan dolaşımına bir kere vücuda giren virüs birçok dokuda semptomlara neden olur. Koronavirüsler; solunum, sindirim, hepatik ve nörolojik hastalıklara neden olur. Nöroinvazif eğilim gösteren korona virüsler; kan beyin bariyerinin kılcal damar endotelinde yıkıma neden olur, sitokin fırtınası ile damar geçirgenliğini artırarak veya periferik sinirlerde ki (koku siniri, vagus siniri) ACE2 enzimine tutunarak santral sinir sistemine ulaşabilir. Nörodejeneatif hastalıkları arttırabilir, presemptomatik hastaları semptomatik hale getirebilir. Nörodejeneratif hastalıkların altta yatan mekanizmasının sitokin fırtınası olması, Covid-19’lu hastaların daha sonra ki süreçlerde de nörodejeneratif hastalık profili açısından değerlendirilmesi gerektiği öngörülmektedir. Bu çalışmanın amacı SARS-CoV2’nin sinir sistemi üzerinde ki olası etkilerine ve enfekte olan bireyleri daha sonraki süreçte olası nörodejeneratif hastalıklar açısından değerlendirilmesine dikkat çekmektir.

References

  • 1. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet. 2020;395(10226):809-15.
  • 2. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nature reviews Microbiology. 2019;17(3):181-92.
  • 3. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565-74.
  • 4. Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Advances in virus research. 81: Elsevier; 2011. p. 85-164.
  • 5. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3.
  • 6. Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. Journal of virology. 2019;93(6).
  • 7. Dong M, Zhang J, Ma X, Tan J, Chen L, Liu S, et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomedicine & Pharmacotherapy. 2020:110678.
  • 8. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature medicine. 2005;11(8):875-9.
  • 9. Turner AJ. ACE2 cell biology, regulation, and physiological functions. The Protective Arm of the Renin Angiotensin System (RAS). 2015:185.
  • 10. Schiavone MT, Santos R, Brosnihan KB, Khosla MC, Ferrario CM. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proceedings of the National Academy of Sciences. 1988;85(11):4095-8.
  • 11. Gonzalez-Villalobos RA, Shen XZ, Bernstein EA, Janjulia T, Taylor B, Giani JF, et al. Rediscovering ACE: novel insights into the many roles of the angiotensin-converting enzyme. Journal of molecular medicine. 2013;91(10):1143-54.
  • 12. WOODMAN ZL, OPPONG SY, COOK S, HOOPER NM, SCHWAGER SL, BRANDT WF, et al. Shedding of somatic angiotensin-converting enzyme (ACE) is inefficient compared with testis ACE despite cleavage at identical stalk sites. Biochemical Journal. 2000;347(3):711-8.
  • 13. Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. Journal of Biological Chemistry. 2004;279(17):17996-8007.
  • 14. Rushworth CA, Guy JL, Turner AJ. Residues affecting the chloride regulation and substrate selectivity of the angiotensin‐converting enzymes (ACE and ACE2) identified by site‐directed mutagenesis. The FEBS journal. 2008;275(23):6033-42.
  • 15. Murphy T, Alexander RW, Griendling KK, Runge MS, Bernstein KE. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991;351(6323):233-6.
  • 16. Richards EM, Raizada MK, Gelband CH, Sumners C. Angiotensin II type 1 receptor-modulated signaling pathways in neurons. Molecular neurobiology. 1999;19(1):25-41.
  • 17. Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong J-C, Turner AJ, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circulation research. 2020;126(10):1456-74.
  • 18. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive care medicine. 2020:1-5.
  • 19. Xu P, Sriramula S, Lazartigues E. ACE2/ANG-(1–7)/Mas pathway in the brain: the axis of good. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2011;300(4):R804-R17.
  • 20. Chen J, Zhao Y, Chen S, Wang J, Xiao X, Ma X, et al. Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology. 2014;79:550-8.
  • 21. Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II–mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circulation research. 2008;102(4):488-96.
  • 22. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature. 2020;579(7798):270-3.
  • 23. Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL, Lazartigues E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2007;292(1):R373-R81.
  • 24. Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the brain: the renin angiotensin system. International journal of molecular sciences. 2018;19(3):876.
  • 25. Tesoriero C, Del Gallo F, Bentivoglio M. Sleep and brain infections. Brain research bulletin. 2019;145:59-74.
  • 26. Irwin MR. Why sleep is important for health: a psychoneuroimmunology perspective. Annual review of psychology. 2015;66:143-72.
  • 27. Ono BHVS, Souza JC. Sleep and immunity in times of COVID-19. Revista da Associação Médica Brasileira. 2020;66:143-7.
  • 28. Lahiri D, Mondal R, Deb S, Bandyopadhyay D, Shome G, Sarkar S, et al. Neuroinvasive potential of a primary respiratory pathogen SARS-CoV2: Summarizing the evidences. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020.
  • 29. Desforges M, Favreau DJ, Brison É, Desjardins J, Meessen-Pinard M, Jacomy H, et al. Human Coronaviruses: Respiratory pathogens revisited as infectious neuroinvasive, neurotropic, and neurovirulent agents. 2013.
  • 30. Arabi YM, Balkhy HH, Hayden FG, Bouchama A, Luke T, Baillie JK, et al. Middle East respiratory syndrome. New England Journal of Medicine. 2017;376(6):584-94.
  • 31. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients. Journal of medical virology. 2020;92(6):552-5.
  • 32. Johansson BB. The physiology of the blood-brain barrier. Circulating regulatory factors and neuroendocrine function: Springer; 1990. p. 25-39.
  • 33. Broadwell R, Charlton H, Ebert P, Hickey W, Villegas J, Wolf A. Angiogenesis and the blood-brain barrier in solid and dissociated cell grafts within the CNS. Progress in brain research. 82: Elsevier; 1990. p. 95-101.
  • 34. Jezová D, Porter JC. Circulating Regulatory Factors and Neuroendocrine Function: Springer Science & Business Media; 2013.
  • 35. Noureddine FY, Altara R, Fan F, Yabluchanskiy A, Booz GW, Zouein FA. Impact of the Renin–Angiotensin System on the Endothelium in Vascular Dementia: Unresolved Issues and Future Perspectives. International journal of molecular sciences. 2020;21(12):4268.
  • 36. Soro-Paavonen A, Gordin D, Forsblom C, Rosengard-Barlund M, Waden J, Thorn L, et al. Circulating ACE2 activity is increased in patients with type 1 diabetes and vascular complications. Journal of hypertension. 2012;30(2):375-83.
  • 37. Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Critical Care. 2020;24(1):1-8.
  • 38. Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, McGary H, Razmpour R, Galie PA, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood–brain barrier. bioRxiv. 2020.
  • 39. Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. International Journal of Infectious Diseases. 2020.
  • 40. Paniz‐Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2). Journal of medical virology. 2020;92(7):699-702.
  • 41. Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2020;12(1):14.
  • 42. St-Jean JR, Jacomy H, Desforges M, Vabret A, Freymuth F, Talbot PJ. Human respiratory coronavirus OC43: genetic stability and neuroinvasion. Journal of virology. 2004;78(16):8824-34.
  • 43. Matsuda K, Park C, Sunden Y, Kimura T, Ochiai K, Kida H, et al. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice. Veterinary pathology. 2004;41(2):101-7.
  • 44. McCray PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. Journal of virology. 2007;81(2):813-21.
  • 45. Hamming I, Timens W, Bulthuis M, Lely A, Navis Gv, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2004;203(2):631-7.
  • 46. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA neurology. 2020.
  • 47. Serrano-Castro P, Estivill-Torrús G, Cabezudo-García P, Reyes-Bueno J, Petersen NC, Aguilar-Castillo M, and, et al. Impact of SARS-CoV-2 infection on neurodegenerative and neuropsychiatric diseases: a delayed pandemic? Neurología (English Edition). 2020.
  • 48. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19–associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020:201187.
  • 49. Channappanavar R, Perlman S, editors. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in immunopathology; 2017: Springer.p. 529-539.
  • 50. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? Molecular neurodegeneration. 2009;4(1):1-13.
  • 51. Schirinzi T, Cerroni R, Di Lazzaro G, Liguori C, Scalise S, Bovenzi R, et al. Self-reported needs of patients with Parkinson’s disease during COVID-19 emergency in Italy. Neurological Sciences. 2020:1-3.
  • 52. Delly F, Syed MJ, Lisak RP, Zutshi D. Myasthenic crisis in COVID-19. Journal of the Neurological Sciences. 2020;414:116888.
  • 53. Naughton SX, Raval U, Pasinetti GM. Potential novel role of COVID-19 in Alzheimer’s disease and preventative mitigation strategies. Journal of Alzheimer's Disease. 2020(Preprint):1-5.
  • 54. Yang M. Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. Available at SSRN 3527420. 2020.
  • 55. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112-6.
  • 56. Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virologica Sinica. 2020:1-6.

Coronavirus (COVID-19) and Nervous System; Beyond the Known

Year 2020, Volume: 1 Issue: 2, 58 - 66, 01.06.2020

Abstract

Corona viruses, which have appeared in different forms in the last two decades, are a family of viruses that can cause severe cases from mild colds. Finally the new type of corona virus (Covid-19, 2019-nCoV, SARS-CoV2), which appeared in late 2019, has a highly contagious feature. The mortality rate is low and the morbidity rate is high. Until today about 17 million cases and it caused the death of approximately 700 thousand patients. Corona viruses are enveloped viruses with a single stranded RNA genome. It is divided into four subgroups according to its genetic and antigenic properties. Alpha-coronaviruses, Beta-coronaviruses, Delta-coronaviruses and Gamma-coronaviruses. The target receptor of SARS-CoV2 is the ACE2 enzyme. ACE2 enzyme is commonly expressed in the body in many tissues, including the lungs, cardiovascular system, kidneys, nervous system, and capillary endothelium. Therefore, the virus that enters the blood circulation once causes symptoms in many tissues. Coronaviruses; causes respiratory, digestive, hepatic and neurological diseases. Corona viruses with neuroinvasive tendency; it causes destruction in the capillary endothelium of the blood brain barrier, it can reach the central nervous system by increasing the vascular permeability by storming cytokines or by attaching to the ACE2 enzyme in the peripheral nerves (smell nerve, vagus nerve). It can increase neurodegenerative diseases and make presymptomatic patients symptomatic. It is to predict that the underlying mechanism of neurodegenerative diseases is cytokin storm, and patients with Covid-19 should be evaluated in terms of neurodegenerative disease profile later on. The aim of this study is to draw attention to the possible effects of SARS-CoV2 on the nervous system and the evaluation of infected individuals in terms of possible neurodegenerative diseases in the later process.

References

  • 1. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet. 2020;395(10226):809-15.
  • 2. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nature reviews Microbiology. 2019;17(3):181-92.
  • 3. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565-74.
  • 4. Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Advances in virus research. 81: Elsevier; 2011. p. 85-164.
  • 5. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3.
  • 6. Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. Journal of virology. 2019;93(6).
  • 7. Dong M, Zhang J, Ma X, Tan J, Chen L, Liu S, et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomedicine & Pharmacotherapy. 2020:110678.
  • 8. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature medicine. 2005;11(8):875-9.
  • 9. Turner AJ. ACE2 cell biology, regulation, and physiological functions. The Protective Arm of the Renin Angiotensin System (RAS). 2015:185.
  • 10. Schiavone MT, Santos R, Brosnihan KB, Khosla MC, Ferrario CM. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proceedings of the National Academy of Sciences. 1988;85(11):4095-8.
  • 11. Gonzalez-Villalobos RA, Shen XZ, Bernstein EA, Janjulia T, Taylor B, Giani JF, et al. Rediscovering ACE: novel insights into the many roles of the angiotensin-converting enzyme. Journal of molecular medicine. 2013;91(10):1143-54.
  • 12. WOODMAN ZL, OPPONG SY, COOK S, HOOPER NM, SCHWAGER SL, BRANDT WF, et al. Shedding of somatic angiotensin-converting enzyme (ACE) is inefficient compared with testis ACE despite cleavage at identical stalk sites. Biochemical Journal. 2000;347(3):711-8.
  • 13. Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. Journal of Biological Chemistry. 2004;279(17):17996-8007.
  • 14. Rushworth CA, Guy JL, Turner AJ. Residues affecting the chloride regulation and substrate selectivity of the angiotensin‐converting enzymes (ACE and ACE2) identified by site‐directed mutagenesis. The FEBS journal. 2008;275(23):6033-42.
  • 15. Murphy T, Alexander RW, Griendling KK, Runge MS, Bernstein KE. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991;351(6323):233-6.
  • 16. Richards EM, Raizada MK, Gelband CH, Sumners C. Angiotensin II type 1 receptor-modulated signaling pathways in neurons. Molecular neurobiology. 1999;19(1):25-41.
  • 17. Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong J-C, Turner AJ, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circulation research. 2020;126(10):1456-74.
  • 18. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive care medicine. 2020:1-5.
  • 19. Xu P, Sriramula S, Lazartigues E. ACE2/ANG-(1–7)/Mas pathway in the brain: the axis of good. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2011;300(4):R804-R17.
  • 20. Chen J, Zhao Y, Chen S, Wang J, Xiao X, Ma X, et al. Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology. 2014;79:550-8.
  • 21. Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II–mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circulation research. 2008;102(4):488-96.
  • 22. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature. 2020;579(7798):270-3.
  • 23. Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL, Lazartigues E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2007;292(1):R373-R81.
  • 24. Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the brain: the renin angiotensin system. International journal of molecular sciences. 2018;19(3):876.
  • 25. Tesoriero C, Del Gallo F, Bentivoglio M. Sleep and brain infections. Brain research bulletin. 2019;145:59-74.
  • 26. Irwin MR. Why sleep is important for health: a psychoneuroimmunology perspective. Annual review of psychology. 2015;66:143-72.
  • 27. Ono BHVS, Souza JC. Sleep and immunity in times of COVID-19. Revista da Associação Médica Brasileira. 2020;66:143-7.
  • 28. Lahiri D, Mondal R, Deb S, Bandyopadhyay D, Shome G, Sarkar S, et al. Neuroinvasive potential of a primary respiratory pathogen SARS-CoV2: Summarizing the evidences. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020.
  • 29. Desforges M, Favreau DJ, Brison É, Desjardins J, Meessen-Pinard M, Jacomy H, et al. Human Coronaviruses: Respiratory pathogens revisited as infectious neuroinvasive, neurotropic, and neurovirulent agents. 2013.
  • 30. Arabi YM, Balkhy HH, Hayden FG, Bouchama A, Luke T, Baillie JK, et al. Middle East respiratory syndrome. New England Journal of Medicine. 2017;376(6):584-94.
  • 31. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients. Journal of medical virology. 2020;92(6):552-5.
  • 32. Johansson BB. The physiology of the blood-brain barrier. Circulating regulatory factors and neuroendocrine function: Springer; 1990. p. 25-39.
  • 33. Broadwell R, Charlton H, Ebert P, Hickey W, Villegas J, Wolf A. Angiogenesis and the blood-brain barrier in solid and dissociated cell grafts within the CNS. Progress in brain research. 82: Elsevier; 1990. p. 95-101.
  • 34. Jezová D, Porter JC. Circulating Regulatory Factors and Neuroendocrine Function: Springer Science & Business Media; 2013.
  • 35. Noureddine FY, Altara R, Fan F, Yabluchanskiy A, Booz GW, Zouein FA. Impact of the Renin–Angiotensin System on the Endothelium in Vascular Dementia: Unresolved Issues and Future Perspectives. International journal of molecular sciences. 2020;21(12):4268.
  • 36. Soro-Paavonen A, Gordin D, Forsblom C, Rosengard-Barlund M, Waden J, Thorn L, et al. Circulating ACE2 activity is increased in patients with type 1 diabetes and vascular complications. Journal of hypertension. 2012;30(2):375-83.
  • 37. Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Critical Care. 2020;24(1):1-8.
  • 38. Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, McGary H, Razmpour R, Galie PA, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood–brain barrier. bioRxiv. 2020.
  • 39. Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. International Journal of Infectious Diseases. 2020.
  • 40. Paniz‐Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2). Journal of medical virology. 2020;92(7):699-702.
  • 41. Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2020;12(1):14.
  • 42. St-Jean JR, Jacomy H, Desforges M, Vabret A, Freymuth F, Talbot PJ. Human respiratory coronavirus OC43: genetic stability and neuroinvasion. Journal of virology. 2004;78(16):8824-34.
  • 43. Matsuda K, Park C, Sunden Y, Kimura T, Ochiai K, Kida H, et al. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice. Veterinary pathology. 2004;41(2):101-7.
  • 44. McCray PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. Journal of virology. 2007;81(2):813-21.
  • 45. Hamming I, Timens W, Bulthuis M, Lely A, Navis Gv, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2004;203(2):631-7.
  • 46. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA neurology. 2020.
  • 47. Serrano-Castro P, Estivill-Torrús G, Cabezudo-García P, Reyes-Bueno J, Petersen NC, Aguilar-Castillo M, and, et al. Impact of SARS-CoV-2 infection on neurodegenerative and neuropsychiatric diseases: a delayed pandemic? Neurología (English Edition). 2020.
  • 48. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19–associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020:201187.
  • 49. Channappanavar R, Perlman S, editors. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in immunopathology; 2017: Springer.p. 529-539.
  • 50. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? Molecular neurodegeneration. 2009;4(1):1-13.
  • 51. Schirinzi T, Cerroni R, Di Lazzaro G, Liguori C, Scalise S, Bovenzi R, et al. Self-reported needs of patients with Parkinson’s disease during COVID-19 emergency in Italy. Neurological Sciences. 2020:1-3.
  • 52. Delly F, Syed MJ, Lisak RP, Zutshi D. Myasthenic crisis in COVID-19. Journal of the Neurological Sciences. 2020;414:116888.
  • 53. Naughton SX, Raval U, Pasinetti GM. Potential novel role of COVID-19 in Alzheimer’s disease and preventative mitigation strategies. Journal of Alzheimer's Disease. 2020(Preprint):1-5.
  • 54. Yang M. Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. Available at SSRN 3527420. 2020.
  • 55. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112-6.
  • 56. Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virologica Sinica. 2020:1-6.
There are 56 citations in total.

Details

Primary Language Turkish
Subjects Medical Physiology
Journal Section Review
Authors

Ayşegül Yurt 0000-0002-6764-3727

Mustafa Saygın 0000-0003-4925-3503

Publication Date June 1, 2020
Submission Date February 6, 2021
Acceptance Date February 22, 2021
Published in Issue Year 2020 Volume: 1 Issue: 2

Cite

Vancouver Yurt A, Saygın M. Koronavirüs (COVİD-19) ve Sinir Sistemi; Bilinenlerin Ötesinde. SD. 2020;1(2):58-66.