Clinical Research
BibTex RIS Cite

Mikrobiyolojik Örneklerden İzole Edilen PseudomonasAeruginosaSuşlarının Antibiyotik Direnç Modelleri

Year 2023, Volume: 16 Issue: 2, 152 - 159, 30.08.2023
https://doi.org/10.52976/vansaglik.1220794

Abstract

Amaç: İnsan katılımcıların verilerini içeren bu tek merkezli retrospektif çalışma, mikrobiyoloji laboratuvarı tarafından dört yıl boyunca toplanan örneklerden izole edilen Pseudomonas aeruginosa suşlarının antibiyotik direnç oranlarını belirlemeyi amaçlamıştır.
Yöntem: 2017-2021 yılları arasında servis, yoğun bakım ve poliklinik servislerinde yatan 789 hastadan izole edilen yara, kan, trakeal aspirat, apse, vajina, beyin omurilik sıvısı, balgam ve idrar kültürü örnekleri Pseudomonas türleri açısından retrospektif olarak değerlendirildi. .
Bulgular: Kültürlerin çoğu idrar (%42.7) ve balgam kültürleriydi (%20.4). Servise başvuran hastaların çoğu göğüs hastalıkları bölümünden (%38,6), üroloji bölümünden (%14,3) ya da palyatif bakım ünitesinden (%12,5) nakledildi. En yüksek direnç oranları sefuroksim, levofloksasin ve netilmisine karşı; en düşük direnç oranı amikasine karşıydı. Aztreonam, sefepim ve gentamisin'e karşı dirençler yıllar içinde önemli ölçüde azalırken (sırasıyla P=0.0321, 0.0038 ve 0.0004), kolistin ve levofloksasine karşı dirençler önemli ölçüde arttı (sırasıyla P<0.0001 ve P=0.0407). Yıllar içinde sefepim, seftazidim ve siprofloksasine karşı dirençlerde önemli düşüşler gözlendi (sırasıyla P=0.0321, 0.0038 ve 0.0004). Yıllar içinde sadece sefepim için idrar kültüründen izole edilen suşların direncinde önemli bir azalma gözlendi (P=0.0003). Balgam, idrar ve solunum sekresyon kültürlerinden izole edilen suşların levofloksasine karşı direnci 2019 yılında önemli ölçüde artarken, 2020 yılında yara kültürünün direnci artmıştır (P=0.0145).
Sonuç: Antimikrobiyallerin sıklıkla çeşitli kullanımları nedeniyle hastalarda antibiyotik direnç profilinde yıllar içinde değişiklikler tespit edildi. Etkili tedavi protokollerini seçmek için her hastane için mikroorganizmaları ve antibiyotik dirençlerini düzenli olarak belirlemek gerekir.

References

  • Adejobi A, Ojo O, Alaka O, Odetoyin B, Onipede A. (2021). Antibiotic resistance pattern of Pseudomonas spp. From patients in a tertiary hospital in South-West Nigeria. Germs Journal, 11(2), 238-245.
  • Chandrika NT, Garneau-Tsodikova S. (2016). A review of patents (2011–2015) to wards combating resistance to and toxicity of aminoglycosides. Medical Chemistry Commun Journal, 7, 50–68.
  • Duman Y, Kuzucu Ç, Kaysadu H, Tekerekoğlu MS. (2012). Investigation of the antimicrobial susceptibility of Pseudomonas aeruginosa strains isolated in one year period: A cross-sectional study. İnönü Üniversitesi Sağlık Bilimleri Dergisi, 1,41-45.
  • Durmaz S, Özer TT. (2015). Antimicrobial resistance of Pseudomonas aeruginosa strains isolated from clinical specimens. Abant Medical Journal, 4(3), 239-242.
  • Eyigör M, Telli M, Tiryaki Y, Okulu Y, Aydın N. (2009). Antimicrobial susceptibilities of Pseudomonas aeruginosa strains isolated from in patients. ANKEM Dergisi, 23(3), 101-105.
  • Frimmersdorf E, Horatzek S, Pelnikevich A, Wiehlmann L, Schomburg D. (2010). How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environmental Microbiology, 12(6), 1734-1747.
  • Gayyurhan E, Zer Y, Mehli M, Akgün S. (2008). Determination of antimicrobial susceptibility and metallo-beta lactamase production of Pseudomonas aeruginosa strains isolated in intensive care unit. Turkish Journal of Infection, 22(1), 49-52.
  • Gysin M, Acevedo CT, Haldimann K, Bodendoerfer E, Imkamp F, Bulut K et al. (2021). Antimicrobial susceptibility patterns of respiratory Gram-negative bacterial isolates from COVID-19 patients in Switzerland. Annual Clinical Microbiology Antimicrobiol Journal, 20(1), 64.
  • Holmes RK, Minshew BH, Gould IK, Sanford JP. (1974). Resistance of Pseudomonas aeruginosa to gentamicin and related aminoglycoside antibiotics. Antimicrobial Agents and Chemotherapy, 6(3), 253-262.
  • Horcajada JP, Montero M, Oliver A. (2019). Epidemiology and treatment of multi drug resistantand extensively drug resistant Pseudomonas aeruginosa infections. Clinical Microbiology Revieve Journal, 32(4), e00031-19.
  • Lodise TPJr, Lomaestro B, Drusano GL. (2007). Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-in fusion do sing strategy. Clinical Infectious Disease Journal, 1;44(3), 357-363.
  • Mathee K, Narasimhan G, Valdes C. (2008). Dynamics of Pseudomonas aeruginosa genome evolution. Proceedings of the National Academy of Sciences Journal, 105(8), 3100-3105.
  • Nelson RE, Hatfield KM, Wolford H. (2021). National estimates of health care costs associated with multi drug resistant bacterial infections among hospitalized patients in the United States. Clinical Infectious Disease Journal, 72(Suppl 1), S17-S26.
  • Öztürk CE, Çalışkan E, Şahin İ. (2011). Antibiotic resistance of Pseudomonas aeruginosa strains and frequency of metallo-beta-lactamases. ANKEM Dergisi, 25(1), 42-47.
  • Pollack M. (1995). Pseudomonas aeruginosa. In: Mandell GL, Dolan R, Bennett JE. Principles and practices of infectious diseases, Churchill Livingstone, New York, pp 1820–2003.
  • Raman G, Avendano EE, Chan J, Merchant S, Puzniak L. (2008). Risk factors for hospitalized patients with resistant or multi drug resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrobial Resistance Infection Control Journal, 7, 79.
  • Ramirez MS, Tolmasky ME. (2017). Amikacin: Uses, resistance, and prospects for inhibition. Molecules, 22(12), 2267.
  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ et al. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406(6799), 959-964.
  • The European Committee on Antimicrobial Susceptibility Testing. Break point Tables for Interpretation of MICs and Zone Diameters, Version 1.0 December 2009–Version 10.0 January (2020).
  • TozluKeten D, Tunçcan ÖG, Dizbay M, Arman D. (2010). Comparative in vitro activity doripenem with other carbapenems against nosocomial Pseudomonas aeruginosa isolates. ANKEM Dergisi, 24(2), 71-75.
  • Varışlı AY, Aksoy A, Baran I, Aksu N. (2017). Antibiotic resistance rates of Pseudomonas aeruginosa strains isolated from clinical specimens by years. Turk Hijyen Deneysel Biyoloji Dergisi, 74(3), 229-236.
  • Vatansever C, Menekse S, Dogan O. (2020). Co-existence of OXA-48 and NDM-1 in colistin resistant Pseudomonas aeruginosa ST235. Emerging Microbiol Infection Journal, 9(1), 152-154.

The Antibiotic Resistance Patterns of Pseudomonas Aeruginosa Strains Isolated from Microbiological Specimens

Year 2023, Volume: 16 Issue: 2, 152 - 159, 30.08.2023
https://doi.org/10.52976/vansaglik.1220794

Abstract

Purpose: This single-center retrospective study involving the data of human participants aimed to determine the antibiotic resistance rates of Pseudomonas aeruginosa strains isolated from samples collected by the microbiology laboratory for four years.
Methods: The samples of wound, blood, tracheal aspirate, abscess, vagina, cerebrospinal fluid, sputum, and urine culture isolated from 789 patients who were hospitalized in the service, intensive care and outpatient services between 2017-2021 were evaluated retrospectively for Pseudomonas species.
Results: Most of culture were urine (42.7%) and sputum cultures (20.4%). Most patients applied to the service were transferred from department of chest diseases (38.6%) or from department of urology (14.3%) or palliative care unit (12.5%). The highest rates of resistances were against cefuroxime, levofloxacin and netilmicin; lowest rate of resistance was against amikacin. The resistances against aztreonam, cefepime and gentamicin significantly reduced over years (P=0.0321, 0.0038 and 0.0004, respectively) while resistances against colistin and levofloxacin considerably increased (P<0.0001 and P=0.0407, respectively). Significant decreases were observed in resistances against cefepime, ceftazidime and ciprofloxacin over years (P=0.0321, 0.0038 and 0.0004, respectively). A significant decrease in resistance of strains isolated from urine culture was only observed for cefepime over years (P=0.0003). The resistance of strains isolated from cultures of sputum, urine and respiratory secretions against levofloxacin significantly increased in 2019 while those of wound culture increased in 2020 (P=0.0145).
Conclusion: Alterations in the antibiotic resistance profile were detected in patients over years due to frequently varied use of antimicrobials. To select effective treatment protocols, it is necessary to regularly determine the microorganisms and their antibiotic resistance for each hospital

References

  • Adejobi A, Ojo O, Alaka O, Odetoyin B, Onipede A. (2021). Antibiotic resistance pattern of Pseudomonas spp. From patients in a tertiary hospital in South-West Nigeria. Germs Journal, 11(2), 238-245.
  • Chandrika NT, Garneau-Tsodikova S. (2016). A review of patents (2011–2015) to wards combating resistance to and toxicity of aminoglycosides. Medical Chemistry Commun Journal, 7, 50–68.
  • Duman Y, Kuzucu Ç, Kaysadu H, Tekerekoğlu MS. (2012). Investigation of the antimicrobial susceptibility of Pseudomonas aeruginosa strains isolated in one year period: A cross-sectional study. İnönü Üniversitesi Sağlık Bilimleri Dergisi, 1,41-45.
  • Durmaz S, Özer TT. (2015). Antimicrobial resistance of Pseudomonas aeruginosa strains isolated from clinical specimens. Abant Medical Journal, 4(3), 239-242.
  • Eyigör M, Telli M, Tiryaki Y, Okulu Y, Aydın N. (2009). Antimicrobial susceptibilities of Pseudomonas aeruginosa strains isolated from in patients. ANKEM Dergisi, 23(3), 101-105.
  • Frimmersdorf E, Horatzek S, Pelnikevich A, Wiehlmann L, Schomburg D. (2010). How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environmental Microbiology, 12(6), 1734-1747.
  • Gayyurhan E, Zer Y, Mehli M, Akgün S. (2008). Determination of antimicrobial susceptibility and metallo-beta lactamase production of Pseudomonas aeruginosa strains isolated in intensive care unit. Turkish Journal of Infection, 22(1), 49-52.
  • Gysin M, Acevedo CT, Haldimann K, Bodendoerfer E, Imkamp F, Bulut K et al. (2021). Antimicrobial susceptibility patterns of respiratory Gram-negative bacterial isolates from COVID-19 patients in Switzerland. Annual Clinical Microbiology Antimicrobiol Journal, 20(1), 64.
  • Holmes RK, Minshew BH, Gould IK, Sanford JP. (1974). Resistance of Pseudomonas aeruginosa to gentamicin and related aminoglycoside antibiotics. Antimicrobial Agents and Chemotherapy, 6(3), 253-262.
  • Horcajada JP, Montero M, Oliver A. (2019). Epidemiology and treatment of multi drug resistantand extensively drug resistant Pseudomonas aeruginosa infections. Clinical Microbiology Revieve Journal, 32(4), e00031-19.
  • Lodise TPJr, Lomaestro B, Drusano GL. (2007). Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-in fusion do sing strategy. Clinical Infectious Disease Journal, 1;44(3), 357-363.
  • Mathee K, Narasimhan G, Valdes C. (2008). Dynamics of Pseudomonas aeruginosa genome evolution. Proceedings of the National Academy of Sciences Journal, 105(8), 3100-3105.
  • Nelson RE, Hatfield KM, Wolford H. (2021). National estimates of health care costs associated with multi drug resistant bacterial infections among hospitalized patients in the United States. Clinical Infectious Disease Journal, 72(Suppl 1), S17-S26.
  • Öztürk CE, Çalışkan E, Şahin İ. (2011). Antibiotic resistance of Pseudomonas aeruginosa strains and frequency of metallo-beta-lactamases. ANKEM Dergisi, 25(1), 42-47.
  • Pollack M. (1995). Pseudomonas aeruginosa. In: Mandell GL, Dolan R, Bennett JE. Principles and practices of infectious diseases, Churchill Livingstone, New York, pp 1820–2003.
  • Raman G, Avendano EE, Chan J, Merchant S, Puzniak L. (2008). Risk factors for hospitalized patients with resistant or multi drug resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrobial Resistance Infection Control Journal, 7, 79.
  • Ramirez MS, Tolmasky ME. (2017). Amikacin: Uses, resistance, and prospects for inhibition. Molecules, 22(12), 2267.
  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ et al. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406(6799), 959-964.
  • The European Committee on Antimicrobial Susceptibility Testing. Break point Tables for Interpretation of MICs and Zone Diameters, Version 1.0 December 2009–Version 10.0 January (2020).
  • TozluKeten D, Tunçcan ÖG, Dizbay M, Arman D. (2010). Comparative in vitro activity doripenem with other carbapenems against nosocomial Pseudomonas aeruginosa isolates. ANKEM Dergisi, 24(2), 71-75.
  • Varışlı AY, Aksoy A, Baran I, Aksu N. (2017). Antibiotic resistance rates of Pseudomonas aeruginosa strains isolated from clinical specimens by years. Turk Hijyen Deneysel Biyoloji Dergisi, 74(3), 229-236.
  • Vatansever C, Menekse S, Dogan O. (2020). Co-existence of OXA-48 and NDM-1 in colistin resistant Pseudomonas aeruginosa ST235. Emerging Microbiol Infection Journal, 9(1), 152-154.
There are 22 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Research Articles
Authors

Duygu Kübra Tuna 0000-0003-1566-2368

Publication Date August 30, 2023
Submission Date December 18, 2022
Published in Issue Year 2023 Volume: 16 Issue: 2

Cite

APA Tuna, D. K. (2023). The Antibiotic Resistance Patterns of Pseudomonas Aeruginosa Strains Isolated from Microbiological Specimens. Van Sağlık Bilimleri Dergisi, 16(2), 152-159. https://doi.org/10.52976/vansaglik.1220794

ISSN 

images?q=tbn:ANd9GcQBnZPknmjKO2vn7ExYwjsL0g4cijty6VTFQQ&usqp=CAU CABI-Logo_Accessible_RGB.png  logo-e1506365530266.png ici2.png 

8c492a0a466f9b2cd59ec89595639a5c?AccessKeyId=245B99561176BAE11FEB&disposition=0&alloworigin=1asos-index.png  Root Indexing    ResearchBib BASE Logo      


Creative Commons Lisansı

Van Health Sciences Journal (Van Sağlık Bilimleri Dergisi) başlıklı eser bu Creative Commons Atıf-Gayri Ticari 4.0 Uluslararası Lisansı ile lisanslanmıştır.

  open-access-logo.png  search-result-logo-horizontal-TEST.jpg