Derleme
BibTex RIS Kaynak Göster

Postbiyotikler ve İnsülin Direnci

Yıl 2023, Cilt: 16 Sayı: 3, 268 - 273, 30.12.2023
https://doi.org/10.52976/vansaglik.1261880

Öz

İnsan vücudu, yaşayan mikroorganizmalar için besin açısından zengin bir ortam sağlarken, kendisi için de bu yararlı mikroorganizmalar ya da onların metabolitleri tarafından bir dizi fayda sağlamaktadır. Probiyotikler genellikle "yeterli miktarlarda uygulandığında konakçıya sağlık yararları sağlayan canlı mikroorganizmalar" olarak tanımlanmaktadır. Probiyotik bakteriler tarafından salgılanan antimikrobiyal maddeler, postbiyotikler olarak kabul edilmekte ve gıdada patojen bakterilerin büyümesini engelleyerek, gıda güvenliğini sağlamakta ve insan sağlığını iyileştirmektedir. Kısa zincirli yağ asitleri (KZYA), mikrobiyal hücre duvarı parçaları, hücre dışı polisakkaritler, hücre lizatları, hücresiz süpernatanlar, teikoik asit, enzimler, vitaminler vb. postbiyotiklere örnek olarak verilebilir. Mikrobiyal türevli KZYA veya flavonoidler gibi postbiyotik örnekleri, konakçının beslenme davranışını, enerji metabolizmasını, insülin sekresyonunu ve insülin duyarlılığını doğrudan etkileyebilmektedir. Bugüne kadar postbiyotiklerin antidiyabetik, terapötik etkileri üzerine çok az araştırma yapılmış ve araştırma sonuçları arasında bazı tutarsızlıklar olmasına rağmen postbiyotiklerin insülin direnci, DM ve diğer metabolik hastalıklar için yeni terapötik ve önleyici yaklaşımlara kapı araladığı görülmektedir. İnsan sağlığı için terapötik etkiyi ortaya koyacak spesifik bir doz ayarlaması için postbiyotiklerin üzerinde daha çok çalışma yapılması gerekmektedir

Kaynakça

  • Aoki R, Kamikado K, Suda W, Takii H, Mikami Y, Uganuma N, et al. (2017). A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Scientific Reports, 7, 43522.
  • Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007). Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences of the USA, 104, 979–984.
  • Bansal T, Alaniz RC, Wood TK, Jayaraman A (2010). The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proceedings of the National Academy of Sciences USA, 107, 228-233.
  • Barazzoni R, Cappellari GG, Ragni M, Nisoli E (2018). Insulin resistance in obesity: an overview of fundamental alterations. Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity, 23, 149–157.
  • Bastiaanssen TFS, Cowan CSM, Claesson MJ, Dinan TG, Cryan JF (2019). Making sense of the microbiome in psychiatry. International Journal Neuropsychopharmacol, 22, 37–52.
  • Brown J, de Vos WM, DiStefano PS, Dore J, Huttenhower C, Knight R. et al. (2013). Translating the human microbiome. Nature Biotechnology, 31, 304–308.
  • Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF (2014). Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends in Molecular Medicine, 20, 509–518.
  • Cabello-Olmo M, Araña M, Urtasun R, Encio IJ, Barajas M (2021). Role of postbiotics in diabetes mellitus: current knowledge and future perspectives. Foods, 10, 1590.
  • Canfora EE, Jocken JW, Blaak EE (2015). Short-chain fatty acids in control of body. Nature Reviews Endocrinology, 11, 577–591.
  • Cavallari JF, Fullerton MD, Duggan BM, Foley KP, Denou E, Smith BK, et al. (2017). Muramyl dipeptide-based postbiotics mitigate obesity-induced insulin resistance via IRF4. Cell Metababolism, 25, 1063–1074.
  • Chan KL, Tam TH, Boroumand P, Prescott D, Costford SR, Escalante NK, et al. (2017). Circulating NOD1 activators and hematopoietic NOD1 contribute to metabolic inflammation and insulin resistance. Cell Reports, 18, 2415–2426.
  • Chimerel C, Emery E, Summers DK, Keyser U, Gribble FM, Reimann F (2014). Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Reports, 9, 1202–1208.
  • Dahech I, Belghith KS, Hamden K, Feki A, Belghith H, Mejdoub H (2011). Antidiabetic activity of levan polysaccharide in alloxan-induced diabetic rats. International Journal of Biological Macromolecules, 49, 742–746.
  • De Marco S, Sichetti M, Muradyan D, Piccioni M, Traina G, Pagiotti R, et al. (2018). Probiotic cell-free supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS. Evidence-Based Complementary and Alternative Medicine, 1756308.
  • Denou E, Lolmède K, Garidou L, Pomie C, Chabo C, Lau TC, et al. (2015). Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance. EMBO Molecular Medicine, 7, 259–274.
  • Deptula P, Chamlagain B, Edelmann M, Sangsuwan P, Nyman TA, Savijoki K, et.al. (2017). Food-like growth conditions support production of active vitamin B12 by Propionibacterium freudenreichii 2067 without DMBI, the lower ligand base, or cobalt supplementation. Front Microbiology, 8, 368.
  • Diez-Guti´errez L, Vicente LS, S´aenz J, Barron LJR, Ch´avarri M (2022). Characterization of the probiotic potential of Lactiplantibacillus plantarum K16 and its ability to produce the postbiotic metabolite γ-aminobutyric acid. Journal of Functional Foods, 97, 105230.
  • Edwards SM, Cunningham SA, Dunlop AL, Corwin EJ (2017). The maternal gut microbiome during pregnancy. MCN The American Journal of Maternal/Child Nursing, 42(6), 310–317.
  • Hernández MAG, Canfora EE, Jocken JWE, Blaak EE (2019). The short-chain fatty acid acetate in bodyweight control and insulin sensitivity. Nutrients, 11, 1943.
  • Hur KY, Lee MS (2014). Gut microbiota and metabolic disorders. Diabetes Metabolism Journal, 39:198-203.
  • Izuddin WI, Humam AM, Loh TC, Foo HL, Samsudin AA. (2020). Dietary postbiotic Lactobacillus plantarum improves serum and ruminal antioxidant activity and upregulates hepatic antioxidant enzymes and ruminal barrier function in post-weaning lambs. Antioxidants, 9, 250.
  • Jastrzab R, Graczyk D, Siedlecki P (2021). Molecular and cellular mechanisms influenced by postbiotics. International Journal of Molecular Sciences, 22, 13475.
  • Kattke M, Gosschalk J, Clubb R. (2017). Structural, biochemical, and cellular studies of TagA, the novel wall teichoic acid glycosyltransferase, for the discovery of gram-positive bacterial inhibitors. FASEB Journal, (31), 939.
  • Kothari D, Patel S, Kim SK (2011). Probiotic supplements might not be universally effective and safe: A review. Biomedicine&Pharmacotherapy, 111 (2019) 537–547.
  • Lee C, Kim BG, Kim JH, Chun J, Im JP, Kim JS (2017). Sodium butyrate inhibits the NF-kappa B signaling pathway and histone deacetylation and attenuates experimental colitis in an IL-10 independent manner. International Immunopharmacology, 51, 47–56.
  • Lee J, Park S, Park J, Kwon M, Seo J, Roh S (2021). Oral intake of Lactobacillus plantarum L-14 extract alleviates TLR2- and AMPK-mediated obesity-associated disorders in high-fat-diet-induced obese C57BL/6J mice. Cell Proliferation, 54, e13039.
  • Lee SH, Park SY, Choi CS (2022). Insulin resistance: from mechanisms to therapeutic strategies. Diabetes Metabolism Journal, 46, 15-37.
  • Li HP, Chen X, Li MQ (2013). Butyrate alleviates metabolic impairments and protects pancreatic beta cell function in pregnant mice with obesity. International Journal of Clinical and Experimental Pathology, 6, 1574–1584.
  • Li X, Chen L, Zhu X, Lu Z, Lu Y (2020). Effect of -aminobutyric acid-rich yogurt on insulin sensitivity in a mouse model of type 2 diabetes mellitus. Journal Dairy Science, 103, 7719–7729.
  • Liu Q, Liu Y, Li F, Gu Z, Liu M, Shao T, et al. (2020). Probiotic culture supernatant improves metabolic function through FGF21-adiponectin pathway in mice. Journal of Nutritional Biochemistry, 75, 108256.
  • Lin HV, Frassetto A, Kowalik Jr, Nawrocki AR, Lu MM, Kosinski JR, et al. (2012). Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE, 7 (4), e35240.
  • Mandaliya DK, Patel S, Seshadri S (2020). The Combinatorial effect of acetate and propionate on high-fat diet induced diabetic inflammation or metaflammation and T cell polarization. Inflammation, 44, 68–79.
  • Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. (2021). SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 80, 37–49.
  • Matheus VA, Monteiro L, Oliveira RB, Maschio DA, Collares-Buzato CB (2017). Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice. Experimental Biology and Medicine, 242, 1214–1226.
  • Moradi M, Kousheh SA, Almasi H, Alizadeh A, Guimarães JT, Yılmaz N, et al. (2020). Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Comprehensive Reviews in Food Science and Food Safety, 19, 3390–3415.
  • Morimoto K, Watanabe M, Sugizaki T, Irie J, Itoh H. (2016). Intestinal bile acid composition modulates prohormone convertase 1/3 (PC1/3) expression and consequent GLP-1 production in male mice. Endocrinology, 157, 1071–1081.
  • Nataraj BH, Ali SA, Behare PV, Yadav H (2020). Postbiotics‑parabiotics: the new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19, 168.
  • Park M, Joung M, Park JO, Ha SK, Park HY (2022). Role of postbiotics in diet-induced metabolic disorders. Nutrients, 14, 3701.
  • Pichette J, Fynn-Sackey N, Gagnon J (2017). Hydrogen sulfide and sulfate prebiotic stimulates the secretion of GLP-1 and improves glycemia in male mice. Endocrinology. 158, 3416–3425.
  • Pingitore A, Chambers ES, Hill T, Maldonado IR, Liu B, Bewick G, et al. (2017). The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obesity Metabolism, 19, 257–265.
  • Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition. 57:1–24
  • Salazar N, Neyrinck AM, Bindels LB, Druart C, Ruas-Madiedo P, Coni PD, et al (2019). Functional effects of EPS-producing Bifidobacterium administration on energy metabolic alterations of diet-induced obese mice. Front Microbiology, 10, 1809.
  • Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, et al. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the ndefinition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18, 649–667.
  • Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, et al. (2011). GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proceedings of the National Academy of Science USA, 108, 11692–11697.
  • Sumrall ET, Shen Y, Keller AP, Rismondo J, Pavlou M, Eugster MR, et al. (2019). Phage resistance at the cost of virulence: listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion. PLoS Pathology, 15,1–29.
  • Tenorio-Jiménez C, Martínez-Ramírez MJ, Gil A, Gómez-Llorente C (2020). Efects of probiotics on metabolic syndrome: A systematic review of randomized clinical trials. Nutrients, 12, 124.
  • Thorakkattu P, Khanashyam AC, Shah K, Babu KS, Mundanat AS, Deliephan A (2022). Postbiotics: current trends in food and pharmaceutical industry. Foods 11, 3094.
  • Tolhurst G, Heron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the g-protein–coupled receptor FFAR2. Diabetes, 61, 364–371. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1131.
  • Van der Beek CM, Canfora EE, Lenaerts K, Troost FJ, Damink S, Holst JJ, et al. (2016). Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clinical Science, 130, 2073–2082.
  • Vrzáˇcková N, Ruml T, Zelenka J (2021). Postbiotics, metabolic signaling, and cancer. Molecules, 26, 1528. Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C (2019). Postbiotics and their potential applications in early life nutrition and beyond. International Journal of Molecular Sciences, 20, 4673.
  • Wilcox G (2005). Insulin and insulin resistance. Clinical Biochemist Reviews, 26.
  • Williams L, Alshehri A, Robichaud B, Cudmore A, Gagnon J (2020). The role of the bacterial muramyl dipeptide in the regulation of glp-1 and glycemia. International Journal of Molecular Sciences, 21(15), 5252.
  • Zółkiewicz J, Marzec A, Ruszczy´nski M, Feleszko W (2020). Postbiotics—a step beyond pre- and probiotics. Nutrients, 12, 2189.

Postbiotics and Insulin Resistance

Yıl 2023, Cilt: 16 Sayı: 3, 268 - 273, 30.12.2023
https://doi.org/10.52976/vansaglik.1261880

Öz

Kaynakça

  • Aoki R, Kamikado K, Suda W, Takii H, Mikami Y, Uganuma N, et al. (2017). A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Scientific Reports, 7, 43522.
  • Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007). Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences of the USA, 104, 979–984.
  • Bansal T, Alaniz RC, Wood TK, Jayaraman A (2010). The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proceedings of the National Academy of Sciences USA, 107, 228-233.
  • Barazzoni R, Cappellari GG, Ragni M, Nisoli E (2018). Insulin resistance in obesity: an overview of fundamental alterations. Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity, 23, 149–157.
  • Bastiaanssen TFS, Cowan CSM, Claesson MJ, Dinan TG, Cryan JF (2019). Making sense of the microbiome in psychiatry. International Journal Neuropsychopharmacol, 22, 37–52.
  • Brown J, de Vos WM, DiStefano PS, Dore J, Huttenhower C, Knight R. et al. (2013). Translating the human microbiome. Nature Biotechnology, 31, 304–308.
  • Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF (2014). Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends in Molecular Medicine, 20, 509–518.
  • Cabello-Olmo M, Araña M, Urtasun R, Encio IJ, Barajas M (2021). Role of postbiotics in diabetes mellitus: current knowledge and future perspectives. Foods, 10, 1590.
  • Canfora EE, Jocken JW, Blaak EE (2015). Short-chain fatty acids in control of body. Nature Reviews Endocrinology, 11, 577–591.
  • Cavallari JF, Fullerton MD, Duggan BM, Foley KP, Denou E, Smith BK, et al. (2017). Muramyl dipeptide-based postbiotics mitigate obesity-induced insulin resistance via IRF4. Cell Metababolism, 25, 1063–1074.
  • Chan KL, Tam TH, Boroumand P, Prescott D, Costford SR, Escalante NK, et al. (2017). Circulating NOD1 activators and hematopoietic NOD1 contribute to metabolic inflammation and insulin resistance. Cell Reports, 18, 2415–2426.
  • Chimerel C, Emery E, Summers DK, Keyser U, Gribble FM, Reimann F (2014). Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Reports, 9, 1202–1208.
  • Dahech I, Belghith KS, Hamden K, Feki A, Belghith H, Mejdoub H (2011). Antidiabetic activity of levan polysaccharide in alloxan-induced diabetic rats. International Journal of Biological Macromolecules, 49, 742–746.
  • De Marco S, Sichetti M, Muradyan D, Piccioni M, Traina G, Pagiotti R, et al. (2018). Probiotic cell-free supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS. Evidence-Based Complementary and Alternative Medicine, 1756308.
  • Denou E, Lolmède K, Garidou L, Pomie C, Chabo C, Lau TC, et al. (2015). Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance. EMBO Molecular Medicine, 7, 259–274.
  • Deptula P, Chamlagain B, Edelmann M, Sangsuwan P, Nyman TA, Savijoki K, et.al. (2017). Food-like growth conditions support production of active vitamin B12 by Propionibacterium freudenreichii 2067 without DMBI, the lower ligand base, or cobalt supplementation. Front Microbiology, 8, 368.
  • Diez-Guti´errez L, Vicente LS, S´aenz J, Barron LJR, Ch´avarri M (2022). Characterization of the probiotic potential of Lactiplantibacillus plantarum K16 and its ability to produce the postbiotic metabolite γ-aminobutyric acid. Journal of Functional Foods, 97, 105230.
  • Edwards SM, Cunningham SA, Dunlop AL, Corwin EJ (2017). The maternal gut microbiome during pregnancy. MCN The American Journal of Maternal/Child Nursing, 42(6), 310–317.
  • Hernández MAG, Canfora EE, Jocken JWE, Blaak EE (2019). The short-chain fatty acid acetate in bodyweight control and insulin sensitivity. Nutrients, 11, 1943.
  • Hur KY, Lee MS (2014). Gut microbiota and metabolic disorders. Diabetes Metabolism Journal, 39:198-203.
  • Izuddin WI, Humam AM, Loh TC, Foo HL, Samsudin AA. (2020). Dietary postbiotic Lactobacillus plantarum improves serum and ruminal antioxidant activity and upregulates hepatic antioxidant enzymes and ruminal barrier function in post-weaning lambs. Antioxidants, 9, 250.
  • Jastrzab R, Graczyk D, Siedlecki P (2021). Molecular and cellular mechanisms influenced by postbiotics. International Journal of Molecular Sciences, 22, 13475.
  • Kattke M, Gosschalk J, Clubb R. (2017). Structural, biochemical, and cellular studies of TagA, the novel wall teichoic acid glycosyltransferase, for the discovery of gram-positive bacterial inhibitors. FASEB Journal, (31), 939.
  • Kothari D, Patel S, Kim SK (2011). Probiotic supplements might not be universally effective and safe: A review. Biomedicine&Pharmacotherapy, 111 (2019) 537–547.
  • Lee C, Kim BG, Kim JH, Chun J, Im JP, Kim JS (2017). Sodium butyrate inhibits the NF-kappa B signaling pathway and histone deacetylation and attenuates experimental colitis in an IL-10 independent manner. International Immunopharmacology, 51, 47–56.
  • Lee J, Park S, Park J, Kwon M, Seo J, Roh S (2021). Oral intake of Lactobacillus plantarum L-14 extract alleviates TLR2- and AMPK-mediated obesity-associated disorders in high-fat-diet-induced obese C57BL/6J mice. Cell Proliferation, 54, e13039.
  • Lee SH, Park SY, Choi CS (2022). Insulin resistance: from mechanisms to therapeutic strategies. Diabetes Metabolism Journal, 46, 15-37.
  • Li HP, Chen X, Li MQ (2013). Butyrate alleviates metabolic impairments and protects pancreatic beta cell function in pregnant mice with obesity. International Journal of Clinical and Experimental Pathology, 6, 1574–1584.
  • Li X, Chen L, Zhu X, Lu Z, Lu Y (2020). Effect of -aminobutyric acid-rich yogurt on insulin sensitivity in a mouse model of type 2 diabetes mellitus. Journal Dairy Science, 103, 7719–7729.
  • Liu Q, Liu Y, Li F, Gu Z, Liu M, Shao T, et al. (2020). Probiotic culture supernatant improves metabolic function through FGF21-adiponectin pathway in mice. Journal of Nutritional Biochemistry, 75, 108256.
  • Lin HV, Frassetto A, Kowalik Jr, Nawrocki AR, Lu MM, Kosinski JR, et al. (2012). Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE, 7 (4), e35240.
  • Mandaliya DK, Patel S, Seshadri S (2020). The Combinatorial effect of acetate and propionate on high-fat diet induced diabetic inflammation or metaflammation and T cell polarization. Inflammation, 44, 68–79.
  • Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. (2021). SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 80, 37–49.
  • Matheus VA, Monteiro L, Oliveira RB, Maschio DA, Collares-Buzato CB (2017). Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice. Experimental Biology and Medicine, 242, 1214–1226.
  • Moradi M, Kousheh SA, Almasi H, Alizadeh A, Guimarães JT, Yılmaz N, et al. (2020). Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Comprehensive Reviews in Food Science and Food Safety, 19, 3390–3415.
  • Morimoto K, Watanabe M, Sugizaki T, Irie J, Itoh H. (2016). Intestinal bile acid composition modulates prohormone convertase 1/3 (PC1/3) expression and consequent GLP-1 production in male mice. Endocrinology, 157, 1071–1081.
  • Nataraj BH, Ali SA, Behare PV, Yadav H (2020). Postbiotics‑parabiotics: the new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19, 168.
  • Park M, Joung M, Park JO, Ha SK, Park HY (2022). Role of postbiotics in diet-induced metabolic disorders. Nutrients, 14, 3701.
  • Pichette J, Fynn-Sackey N, Gagnon J (2017). Hydrogen sulfide and sulfate prebiotic stimulates the secretion of GLP-1 and improves glycemia in male mice. Endocrinology. 158, 3416–3425.
  • Pingitore A, Chambers ES, Hill T, Maldonado IR, Liu B, Bewick G, et al. (2017). The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obesity Metabolism, 19, 257–265.
  • Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition. 57:1–24
  • Salazar N, Neyrinck AM, Bindels LB, Druart C, Ruas-Madiedo P, Coni PD, et al (2019). Functional effects of EPS-producing Bifidobacterium administration on energy metabolic alterations of diet-induced obese mice. Front Microbiology, 10, 1809.
  • Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, et al. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the ndefinition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18, 649–667.
  • Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, et al. (2011). GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proceedings of the National Academy of Science USA, 108, 11692–11697.
  • Sumrall ET, Shen Y, Keller AP, Rismondo J, Pavlou M, Eugster MR, et al. (2019). Phage resistance at the cost of virulence: listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion. PLoS Pathology, 15,1–29.
  • Tenorio-Jiménez C, Martínez-Ramírez MJ, Gil A, Gómez-Llorente C (2020). Efects of probiotics on metabolic syndrome: A systematic review of randomized clinical trials. Nutrients, 12, 124.
  • Thorakkattu P, Khanashyam AC, Shah K, Babu KS, Mundanat AS, Deliephan A (2022). Postbiotics: current trends in food and pharmaceutical industry. Foods 11, 3094.
  • Tolhurst G, Heron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the g-protein–coupled receptor FFAR2. Diabetes, 61, 364–371. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1131.
  • Van der Beek CM, Canfora EE, Lenaerts K, Troost FJ, Damink S, Holst JJ, et al. (2016). Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clinical Science, 130, 2073–2082.
  • Vrzáˇcková N, Ruml T, Zelenka J (2021). Postbiotics, metabolic signaling, and cancer. Molecules, 26, 1528. Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C (2019). Postbiotics and their potential applications in early life nutrition and beyond. International Journal of Molecular Sciences, 20, 4673.
  • Wilcox G (2005). Insulin and insulin resistance. Clinical Biochemist Reviews, 26.
  • Williams L, Alshehri A, Robichaud B, Cudmore A, Gagnon J (2020). The role of the bacterial muramyl dipeptide in the regulation of glp-1 and glycemia. International Journal of Molecular Sciences, 21(15), 5252.
  • Zółkiewicz J, Marzec A, Ruszczy´nski M, Feleszko W (2020). Postbiotics—a step beyond pre- and probiotics. Nutrients, 12, 2189.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Betül Sarıdağ Devran 0000-0003-4580-1998

Mendane Saka 0000-0002-5516-426X

Yayımlanma Tarihi 30 Aralık 2023
Gönderilme Tarihi 8 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 16 Sayı: 3

Kaynak Göster

APA Sarıdağ Devran, B., & Saka, M. (2023). Postbiyotikler ve İnsülin Direnci. Van Sağlık Bilimleri Dergisi, 16(3), 268-273. https://doi.org/10.52976/vansaglik.1261880

ISSN 

images?q=tbn:ANd9GcQBnZPknmjKO2vn7ExYwjsL0g4cijty6VTFQQ&usqp=CAU CABI-Logo_Accessible_RGB.png  logo-e1506365530266.png ici2.png 

8c492a0a466f9b2cd59ec89595639a5c?AccessKeyId=245B99561176BAE11FEB&disposition=0&alloworigin=1asos-index.png  Root Indexing    ResearchBib BASE Logo      


Creative Commons Lisansı

Van Health Sciences Journal (Van Sağlık Bilimleri Dergisi) başlıklı eser bu Creative Commons Atıf-Gayri Ticari 4.0 Uluslararası Lisansı ile lisanslanmıştır.

  open-access-logo.png  search-result-logo-horizontal-TEST.jpg