Detection of Some Bacteriocin Genes in Enterococcus faecium Isolates Obtained from Mastitic Bovine Milk Samples
Year 2018,
Volume: 29 Issue: 1, 27 - 32, 30.04.2018
Yeter Delibaş
Süheyla Türkyılmaz
Abstract
In this study, Enterococcus faeciumisolates obtained from mastitis cattle were investigated for carrying the most important bacteriocin structural genes enterocin A (entA), enterocin B (entB), enterocin P (entP) genes. The study material was 620 milk samples taken from mastitic cattle. Enterococcal isolation was performed using classical bacteriological methods in selective media. Molecular methods were used to in order to conduct the identification of genus and species as well as the presence of enterocin genes. As a result of isolation studies, 15.5% (96 isolates) of enterococci were isolated; of which 13.5% (13 isolates) were E. faecium. entA and entB genes bacteriocin structural genes were determined to be 30.8% (4 isolates) and the entP gene 7.7% (1 isolate). There were two gene combinations: the first one with 23.0% (3 isolates) entA + entB gene combination and the second with 7.7% (1 isolate) entA + entB + entP genes. This study showed that E. faeciumstrains obtained from mastitic cattle milk could potentially synthesize bacteriocin because they have potency to carry bacteriocin genes. It is believed that further studies are needed to determine the distribution of bacteriocin genes in other enterococci isolated from bovine milk of mastitis and to search for potential use of bacteriocins in this area.
References
- Ben Lagha A, Haas B, Gottschalk M, Grenier D (2017). Antimicrobial potential of bacteriocins in poultry and swine production. Vet Res 48:22. DOI 10.1186/s13567-017-0425-6
Brandão A, Almeida T, Muñoz-Atienza E, Torres C, Igrejas G, Hernández PE, Cintas LM, Poeta P, Herranz C (2010). Antimicrobial activity and occurrence of bacteriocin structural genes in Enterococcus spp. of human and animal origin isolated in Portugal. Arch Microbiol, 192, 927–936.
Casaus P, Nilsen T, Cintas LM, Nes, IF, Hernández PE, Holo H (1997). Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin. Microbiol-SGM, 143, 2287-2294.
Cintas LM, Casaus P, Håvarstein LS, Hernandez PE, Nes IF (1997). Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol, 63, 4321-4330.
Cole K, Farnell MB, Donoghue AM, Stern NJ et al., (2006). Bacteriocins reduce Campylobacter colonization and alter gut morphology in turkey poults. Poult Sci 85:1570–1575.
De Vuyst L, Foulquie Moreno MR, Revets H (2003). Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol, 84, 299–318.
Del Campo R, Tenorio C, Jimenez-Diaz R, Rubio C, Gomez-Lus R, Baquero F, Torres C (2001). Bacteriocin production in vancomycin-resistant and vancomycin-susceptible Enterococcus isolates of different origins. Antimicrobl Agents Ch, 45, 905–912.
Du Toit M, Franz CM, Dicks LM, Holzapfel WH (2000). Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J Appl Microbiol, 88, 482–494.
Eaton TJ, Gasson MJ (2001). Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol, 67, 1628–1635.
Edalatian MR, Najafi MBH, Mortazavi SA (2012). Production of bacteriocins by Enterococcus spp. isolated from traditional, Iranian, raw milk cheeses, and detection of their encoding genes. Eur Food Res Tech Z Lebensm Unters Forsch, 234, 789–796.
Foulquie Moreno MR, Sarantinopoulos P, Tsakalidou E, DeVuyst L (2006). The role and application of enterococci in food and health. Int J Food Microbiol, 106, 1–24.
Franz CM, Worobo RW, Quadri LEN, Schillinger U, Holzapfel WH, Vederas JC, Stiles ME (1999). A typical genetic locus ciated with constitutive production of enterocin B by Enterococcus faecium BFE 900. Appl Environ Microbiol, 65, 2170–2178.
Franz CMAP, Van Belkum M, Holzapfel WH, Abriouel H, Gálvez A (2007). Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev, 31, 293-310.
Hugas M, Garriga M, Aymerich MT (2003). Functionality of enterococci in meat products. Int J Food Microbiol, 88, 223–233.
Ke D, Picard FJ, Martineau F, Menard C, Roy PH, Ouellette M, Bergeron MG (1999). Development of a PCR assay for rapid detection of enterococci. J Clin Microbiol, 37, 3497–3503.
Kim SY, Park YK, Kim SH, Shin S, Koo HC, Youn JH, So JH, Paik HD, Park YH, Choi KY (2008). Isolation of bacteriocin producing bacteria from bovine milk effective to bovine mastitis-causing and other antibiotic-resistant bacteria. The Congress of FAVA, FAVA - OIE Joint Symposium on Emerging Diseases, 27-30 October, Bangkok, Thailand.
Lanthier M, Scott A, Lapen D, Zhang Y, Topp E (2010). Frequency of virulence genes and antibiotic resistances in Enterococcus sp. isolates from wastewater and feces of domesticated mammals and birds, and wildlife. Can J Microbiol, 56, 715–29.
Laukova´A, Jurin P (1997). Distribution and characterization of Enterococcus species in municipal sewages. Microbios, 97, 73–80.
Laukova A, Marekova M (2001). Production of bacteriocins by different enterococcal isolates. Folia Microbiologica, 46, 49–52.
Lorenzelli P (1994). Gram-positive cocci isolated from slaughtered poultry. Microbiol Res, 149, 203–213.
Marekova M, Laukova A, Skaugen M, Nes I (2007). Isolation and characterization of a new bacteriocin, termed enterocin M, produced by environmental isolate Enterococcus faecium AL41. J Ind Microbiol Biot, 34, 533–7.
Nes IF, Diep DB, Holo H (2007). Bacteriocin diversity in Streptococcus and Enterococcus. J Bacteriol, 189, 1189–98.
Nilsen T, Nes IF, Holo H (2003). Enterolysin A, a cell Wall degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol, 69, 2975–2984.
Ogunbanwo ST, Sanni AI, Onilude AA (2004). Infuence of bacteriocin in the control of Escherichia coli infection of broiler chickens in Nigeria. World J Microbiol Biotechnol 20, 51–56.
Özdemir BG, Oryaşın E, Bıyık HH, Özteber M, Bozdoğan B (2011). Phenotypic and genotypic characterization of bacteriocins in enterococcal isolates of different sources. Indian J Microbiol, 51, 182–187.
Özden Tuncer B, Ay Z, Tuncer Y (2013). Occurrence of enterocin genes, virulence factors, and antibiotic resistance 3 bacteriocin-producer Enterococcus faecium strains isolated from Turkish tulum cheese. Turkish J Biol, 37, 443-449.
Poeta P, Costa D, Rodrigues J, Torres C (2006). Detection of genes encoding virulence factors and bacteriocins in fecal enterococci of poultry in Portugal. Avian Dis, 50, 64-68.
Poeta P, Costa D, Rojo-Bezares B, Zarazaga M, Klibi N, Rodrigues J, Torres C (2007). Detection of antimicrobial activities and bacteriocin structural genes in faecal enterococci of wild animals. Microbiol Res, 162, 257-263.
Semedo T, Santos MA, Martins P, Lopes MFS, Marques JJF, Tenreiro R, Crespo MTB (2003). Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. J Clin Microbiol, 41, 2569–2576.
Strompfová V, Lauková A, Simonová M, Marcináková M (2008). Occurrence of the structural enterocin A, P, B, L50B genes in enterococci of different origin. Vet Microbiol , 132, 293-301.
Turtura GC, Giraffa G (1995). Enterococcal bacteriocins: their potencial as anti-Listeria factors in dairy technology. Food Microbiol, 12, 291–299.
Vilela MA, de Souza SL, Palazzo ICV, Ferreira JC, de Morais Jr MA, da Costa Darini AL, de Morais MMC (2006). Identification and molecular characterization of Van A-type vancomycin-resistant Enterococcus faecalis in Northeast of Brazil. Mem I Oswaldo Cruz, 101, 716-719.
Wanjiru MJ (2015). Isolation, identification and screening of Bacillus species from Rastrineobola argentea (Omena) for production of bacteriocins active against bovine mastitis pathogens (Escherichia coli and Staphylococcus aureus). Jomo Kenyatta University, Food Science and Nutrition Master’s Thesis.
Mastitisli Sığır Süt Örneklerinden Elde Edilen Enterococcus faecium İzolatlarında Bazı Bakteriyosin Genlerinin Saptanması
Year 2018,
Volume: 29 Issue: 1, 27 - 32, 30.04.2018
Yeter Delibaş
Süheyla Türkyılmaz
Abstract
Bu çalışmada mastitisli sığırlardan elde edilen Enterococcus faeciumizolatlarının, en önemli bakteriyosin yapısal genleri olan enterosin A (entA), enterosin B (entB), enterosin P (entP) genlerini taşıma potansiyelleri araştırıldı. Çalışma materyalini 620 mastitisli sığırdan alınan süt örnekleri oluşturdu. Enterokok izolasyonu selektif besiyerinde klasik yöntemler kullanılarak gerçekleştirildi. Cins ve tür düzeyinde identifikasyon ile bakteriyosin gen varlıklarını belirlemek için moleküler yöntemler kullanıldı. İzolasyon çalışmaları sonucunda %15.5 (96 izolat) enterokok izole edilirken; bunların %13.5 (13 izolat)’unun E. faecium olduğu belirlendi. Bakteriyosin yapısal genlerinden entA ve entB genleri izolatların %30.8 (4 izolat)’inde belirlenirken; entP geni %7.7 (1 izolatta) bulunuyordu. İki gen kombinasyonu mevcuttu: Bunlardan birincisi %23.0 (3 izolat) oranında entA+entB gen kombinasyou ikincisi ise %7.7 (1 izolat) oranında entA+entB+entP genlerinin birlikte görüldüğü kombinasyondu. Bu çalışma ile mastitisli sığır sütlerinden elde edilen E. faeciumsuşlarının bakteriyosin genlerini taşıma potansiyeline sahip oldukları dolayısı ile bakteriyosin sentezleyebilecekleri belirlendi. Mastitis sığır sütünden izole edilen diğer enterokoklarda bakteriyosin genlerinin dağılımını saptamak ve bakteriyosinlerin bu alanda kullanım potansiyelini aramak için daha fazla çalışma yapılmasına ihtiyaç duyulduğuna inanılmaktadır.
References
- Ben Lagha A, Haas B, Gottschalk M, Grenier D (2017). Antimicrobial potential of bacteriocins in poultry and swine production. Vet Res 48:22. DOI 10.1186/s13567-017-0425-6
Brandão A, Almeida T, Muñoz-Atienza E, Torres C, Igrejas G, Hernández PE, Cintas LM, Poeta P, Herranz C (2010). Antimicrobial activity and occurrence of bacteriocin structural genes in Enterococcus spp. of human and animal origin isolated in Portugal. Arch Microbiol, 192, 927–936.
Casaus P, Nilsen T, Cintas LM, Nes, IF, Hernández PE, Holo H (1997). Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin. Microbiol-SGM, 143, 2287-2294.
Cintas LM, Casaus P, Håvarstein LS, Hernandez PE, Nes IF (1997). Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol, 63, 4321-4330.
Cole K, Farnell MB, Donoghue AM, Stern NJ et al., (2006). Bacteriocins reduce Campylobacter colonization and alter gut morphology in turkey poults. Poult Sci 85:1570–1575.
De Vuyst L, Foulquie Moreno MR, Revets H (2003). Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol, 84, 299–318.
Del Campo R, Tenorio C, Jimenez-Diaz R, Rubio C, Gomez-Lus R, Baquero F, Torres C (2001). Bacteriocin production in vancomycin-resistant and vancomycin-susceptible Enterococcus isolates of different origins. Antimicrobl Agents Ch, 45, 905–912.
Du Toit M, Franz CM, Dicks LM, Holzapfel WH (2000). Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J Appl Microbiol, 88, 482–494.
Eaton TJ, Gasson MJ (2001). Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol, 67, 1628–1635.
Edalatian MR, Najafi MBH, Mortazavi SA (2012). Production of bacteriocins by Enterococcus spp. isolated from traditional, Iranian, raw milk cheeses, and detection of their encoding genes. Eur Food Res Tech Z Lebensm Unters Forsch, 234, 789–796.
Foulquie Moreno MR, Sarantinopoulos P, Tsakalidou E, DeVuyst L (2006). The role and application of enterococci in food and health. Int J Food Microbiol, 106, 1–24.
Franz CM, Worobo RW, Quadri LEN, Schillinger U, Holzapfel WH, Vederas JC, Stiles ME (1999). A typical genetic locus ciated with constitutive production of enterocin B by Enterococcus faecium BFE 900. Appl Environ Microbiol, 65, 2170–2178.
Franz CMAP, Van Belkum M, Holzapfel WH, Abriouel H, Gálvez A (2007). Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev, 31, 293-310.
Hugas M, Garriga M, Aymerich MT (2003). Functionality of enterococci in meat products. Int J Food Microbiol, 88, 223–233.
Ke D, Picard FJ, Martineau F, Menard C, Roy PH, Ouellette M, Bergeron MG (1999). Development of a PCR assay for rapid detection of enterococci. J Clin Microbiol, 37, 3497–3503.
Kim SY, Park YK, Kim SH, Shin S, Koo HC, Youn JH, So JH, Paik HD, Park YH, Choi KY (2008). Isolation of bacteriocin producing bacteria from bovine milk effective to bovine mastitis-causing and other antibiotic-resistant bacteria. The Congress of FAVA, FAVA - OIE Joint Symposium on Emerging Diseases, 27-30 October, Bangkok, Thailand.
Lanthier M, Scott A, Lapen D, Zhang Y, Topp E (2010). Frequency of virulence genes and antibiotic resistances in Enterococcus sp. isolates from wastewater and feces of domesticated mammals and birds, and wildlife. Can J Microbiol, 56, 715–29.
Laukova´A, Jurin P (1997). Distribution and characterization of Enterococcus species in municipal sewages. Microbios, 97, 73–80.
Laukova A, Marekova M (2001). Production of bacteriocins by different enterococcal isolates. Folia Microbiologica, 46, 49–52.
Lorenzelli P (1994). Gram-positive cocci isolated from slaughtered poultry. Microbiol Res, 149, 203–213.
Marekova M, Laukova A, Skaugen M, Nes I (2007). Isolation and characterization of a new bacteriocin, termed enterocin M, produced by environmental isolate Enterococcus faecium AL41. J Ind Microbiol Biot, 34, 533–7.
Nes IF, Diep DB, Holo H (2007). Bacteriocin diversity in Streptococcus and Enterococcus. J Bacteriol, 189, 1189–98.
Nilsen T, Nes IF, Holo H (2003). Enterolysin A, a cell Wall degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol, 69, 2975–2984.
Ogunbanwo ST, Sanni AI, Onilude AA (2004). Infuence of bacteriocin in the control of Escherichia coli infection of broiler chickens in Nigeria. World J Microbiol Biotechnol 20, 51–56.
Özdemir BG, Oryaşın E, Bıyık HH, Özteber M, Bozdoğan B (2011). Phenotypic and genotypic characterization of bacteriocins in enterococcal isolates of different sources. Indian J Microbiol, 51, 182–187.
Özden Tuncer B, Ay Z, Tuncer Y (2013). Occurrence of enterocin genes, virulence factors, and antibiotic resistance 3 bacteriocin-producer Enterococcus faecium strains isolated from Turkish tulum cheese. Turkish J Biol, 37, 443-449.
Poeta P, Costa D, Rodrigues J, Torres C (2006). Detection of genes encoding virulence factors and bacteriocins in fecal enterococci of poultry in Portugal. Avian Dis, 50, 64-68.
Poeta P, Costa D, Rojo-Bezares B, Zarazaga M, Klibi N, Rodrigues J, Torres C (2007). Detection of antimicrobial activities and bacteriocin structural genes in faecal enterococci of wild animals. Microbiol Res, 162, 257-263.
Semedo T, Santos MA, Martins P, Lopes MFS, Marques JJF, Tenreiro R, Crespo MTB (2003). Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. J Clin Microbiol, 41, 2569–2576.
Strompfová V, Lauková A, Simonová M, Marcináková M (2008). Occurrence of the structural enterocin A, P, B, L50B genes in enterococci of different origin. Vet Microbiol , 132, 293-301.
Turtura GC, Giraffa G (1995). Enterococcal bacteriocins: their potencial as anti-Listeria factors in dairy technology. Food Microbiol, 12, 291–299.
Vilela MA, de Souza SL, Palazzo ICV, Ferreira JC, de Morais Jr MA, da Costa Darini AL, de Morais MMC (2006). Identification and molecular characterization of Van A-type vancomycin-resistant Enterococcus faecalis in Northeast of Brazil. Mem I Oswaldo Cruz, 101, 716-719.
Wanjiru MJ (2015). Isolation, identification and screening of Bacillus species from Rastrineobola argentea (Omena) for production of bacteriocins active against bovine mastitis pathogens (Escherichia coli and Staphylococcus aureus). Jomo Kenyatta University, Food Science and Nutrition Master’s Thesis.