Review
BibTex RIS Cite

The Determination of Listeria monocytogenes in Foods with Optical Biosensors

Year 2020, Volume: 31 Issue: 1, 50 - 55, 12.03.2020
https://doi.org/10.36483/vanvetj.643925

Abstract

Listeria monocytogenes is a food-borne intracellular pathogen that is resistant to adverse conditions of food processing and is a causative agent of high mortality listeriosis disease. Analysis of large food lots is limited by culture methods. Nowadays, although the conventional culture methods have been adopted as the gold standard method, they can be insufficient to control food parties that reach very large quantities. Biosensors with on-site detection potential and their characterizing with high accuracy and precision offers many opportunities for real-time estimation of industrial contamination. As the most promising technique for rapid detection of L.monocytogenes, ones based on surface plasmon resonance (SPR) and fiber optic biosensors (FOBs) where direct or indirect detections can be made by detecting the interaction of the biomarker element with the optical field without marking or labeling, have come to the fore. SPR and FOBs can be detected directly in the range of 102-106 cfu/ml and ≤101-103 cfu/ml, respectively.

References

  • Abdelhaseib MU, Singh AK, Bailey M et al. (2016). Fiber optic and light scattering sensors: Complimentary approaches to rapid detection of Salmonella enterica in food samples. Food Control 61, 135-145.Aguilar ZP, Fritsch I (2003). Immobilized enzyme-linked DNA-hybridization assay with electrochemical detection for Cryptosporidium parvum hsp70 mRNA. Anal Chem 75, 3890-3897.Ahmad M, Hench LL (2005). Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers. Biosens Bioelectron 20, 1312-1319.Anderson GP, Golden JP, Ligler FS (1993). A Fiber Optic Biosensor - Combination Tapered Fibers Designed for Improved Signal Acquisition. Biosens Bioelectron 8, 249-256.Arora P, Sindhu A, Dilbaghi N et al. (2011). Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 28, 1-12.Bergwerff AA, Van Knapen F (2006). Surface plasmon resonance biosensors for detection of pathogenic microorganisms: Strategies to secure food and environmental safety. J Aoac Int 89, 826-831.Buck JA (1995). Fundamentals of Optical Fibers, A John Wiley & Sons. Inc., New York.Bures J, Ghosh R (1999). JOSA A. JOSA A 16, 1992-1996.Chen GY (2004). Profile optimization of tapered waveguide sensors by fluorescence imaging. P Soc Photo-Opt Ins 5589, 70-77.Chlebicz A, Slizewska K (2018). Campylobacteriosis, Salmonellosis, Yersiniosis, and Listeriosis as Zoonotic Foodborne Diseases: A Review. Int J Env Res Pub He 15.Díaz-Herrera N, Navarrete M, Esteban O et al. (2003). A fibre-optic temperature sensor based on the deposition of a thermochromic material on an adiabatic taper. Meas Sci Technol 15, 353.Dover JE, Hwang GM, Mullen EH et al. (2009). Recent advances in peptide probe-based biosensors for detection of infectious agents. J Microbiol Methods 78, 10-19.Geng T, Morgan MT, Bhunia AK (2004). Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor. Appl Environ Microb 70, 6138-6146.Guo S, Albin S (2003). Transmission property and evanescent wave absorption of cladded multimode fiber tapers. Opt Express 11, 215-223.Hearty S, Leonard P, Quinn J et al. (2006). Production, characterisation and potential application of a novel monoclonal antibody for rapid identification of virulent Listeria monocytogenes. J Microbiol Methods 66, 294-312.Iqbal SS, Mayo MW, Bruno JG et al. (2000). A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron 15, 549-578.Joung HA, Shim WB, Chung DH et al. (2007). Screening of a specific monoclonal antibody against and detection of Listeria monocytogenes whole cells using a surface plasmon resonance biosensor. Biotechnol Bioproc E 12, 80-85.Kharat HJ, Kakde KP, Shirale DJ et al. (2006). Designing of optical fiber sensing probe. Fiber Integrated Opt 25, 411-422.Kim G, Morgan MT, Ess D et al. (2006). Detection of Listeria monocytogenes using an automated fiber-optic biosensor: RAPTOR. Key Eng Mater 321-323, 1168-1171.Koubova V, Brynda E, Karasova L et al. (2001). Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensor Actuat B-Chem 74, 100-105.Lathrop AA, Jaradat ZW, Haley T et al. (2003). Characterization and application of a Listeria monocytogenes reactive monoclonal antibody C11E9 in a resonant mirror biosensor. J Immunol Methods 281, 119-128.Lee CK, Itoh T, Ohashi T et al. (1997). Development of a piezoelectric self-excitation and self-detection mechanism in PZT microcantilevers for dynamic scanning force microscopy in liquid. J Vac Sci Technol B 15, 1559-1563.Leonard P, Hearty S, Quinn J et al. (2004). A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron 19, 1331-1335.Mackenzie HS, Payne FP (1990). Evanescent Field Amplification in a Tapered Single-Mode Optical Fiber. Electron Lett 26, 130-132.Marusov G, Sweatt A, Pietrosimone K et al. (2012). A Microarray Biosensor for Multiplexed Detection of Microbes Using Grating-Coupled Surface Plasmon Resonance Imaging. Environ Sci Technol 46, 348-359.Mignani AG, Falciai R, Ciaccheri L (1998). Evanescent wave absorption spectroscopy by means of bi-tapered multimode optical fibers. Appl Spectrosc 52, 546-551.Mor-Mur M, Yuste J (2010). Emerging Bacterial Pathogens in Meat and Poultry: An Overview. Food Bioprocess Tech 3, 24-35.Nanduri V, Bhunia AK, Tu SI et al. (2007). SPR biosensor for the detection of L.monocytogenes using phage-displayed antibody. Biosens Bioelectron 23, 248-252.Nanduri V, Kim G, Morgan M et al. (2006). Antibody immobilization on waveguides using aflow–through system shows improved Listeria monocytogenes detection in an automated fiber optic biosensor: RAPTORTM. Sensors 6, 808-822.Ohk SH, Bhunia AK (2013). Multiplex fiber optic biosensor for detection of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica from ready-to-eat meat samples. Food Microbiol 33, 166-171.Ohk SH, Koo OK, Sen T et al. (2010). Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol 109, 808-817.Poltronieri P, de Blasi MD, D'Urso OF (2009). Detection of Listeria monocytogenes through real-time PCR and biosensor methods. Plant Soil Environ 55, 363-369.Rich RL, Myszka DG (2001). BIACORE J: a new platform for routine biomolecular interaction analysis. J Mol Recognit 14, 223-228.Rijal K, Leung A, Shankar PM et al. (2005). Detection of pathogen Escherichia coli O157: H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors. Biosens Bioelectron 21, 871-880.Schmelcher M, Shabarova T, Eugster MR et al. (2010). Rapid Multiplex Detection and Differentiation of Listeria Cells by Use of Fluorescent Phage Endolysin Cell Wall Binding Domains. Appl Environ Microb 76, 5745-5756.Shankaran DR, Gobi KVA, Miura N (2007). Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensor Actuat B-Chem 121, 158-177.Sharma H, Mutharasan R (2013). Review of biosensors for foodborne pathogens and toxins. Sensor Actuat B-Chem 183, 535-549.Sheeba M, Rajesh M, Vallabhan CPG et al. (2005). Fibre optic sensor for the detection of adulterant traces in coconut oil. Meas Sci Technol 16, 2247-2250.Sireli UT, Erol I (1999). Detection of listeria species in minced beef. Turk J Vet Anim Sci 23, 373-380.Soni DK, Ahmad R, Dubey SK (2018). Biosensor for the detection of Listeria monocytogenes: emerging trends. Crit Rev Microbiol 44, 590-608.Taylor AD, Ladd J, Yu Q et al. (2006). Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron 22, 752-758.Tims TB, Dickey SS, Demarco DR et al. (2001). Detection of low levels of Listeria monocytogenes within 20 hours using an evanescent wave biosensor. Am Clin Lab 20, 28-29.Tubb AJC, Payne FP, Millington RB et al. (1997). Single-mode optical fibre surface plasma wave chemical sensor. Sensor Actuat B-Chem 41, 71-79.Turner AP (2000). Biosensors--sense and sensitivity. Science 290, 1315-1317.Villatoro J, Luna-Moreno D, Monzon-Hernandez D (2005). Optical fiber hydrogen sensor for concentrations below the lower explosive limit. Sensor Actuat B-Chem 110, 23-27.Walland J, Lauper J, Frey J et al. (2015). Listeria monocytogenes infection in ruminants: Is there a link to the environment, food and human health? A review. Schweiz Arch Tierh 157, 319-328.Wang H, Li YB, Slavik M (2007). Rapid detection of Listeria monocytogenes using quantum dots and nanobeads-based optical biosensor. J Rapid Meth Aut Mic 15, 67-76.Zhang XG, Kitaoka H, Tsuni S et al. (2014). Development of a Simultaneous Detection Method for Foodborne Pathogens Using Surface Plasmon Resonance Biosensors. Food Sci Technol Res 20, 317-325.

Gıdalardan Listeria monocytogenes’in Optik Biyosensörlerle Belirlenmesi

Year 2020, Volume: 31 Issue: 1, 50 - 55, 12.03.2020
https://doi.org/10.36483/vanvetj.643925

Abstract

Listeria monocytogenes gıda kaynaklı intrasellüler patojen olarak gıda işlemenin olumsuz koşullarına dayanıklı ve yüksek mortaliteli listerioz hastalığının etkenidir. Büyük gıda partilerinin kültür yöntemleri ile analizi sınırlıdır. Günümüzde, geleneksel kültür yöntemleri altın standart yöntem olarak benimsenmesine karşın, çok büyük miktarlara ulaşan gıda partilerini kontrol etmede yetersiz olabilirler. Biyosensörlerin yerinde tespit potansiyeli ile yüksek doğruluk ve hassasiyetle karakterize edilmeleri, endüstriyel kontaminasyonları gerçek zamanlı tahminde birçok fırsat sunmaktadır. Listeria monocytogenes, hızlı tespitte en umut verici teknik olarak işaretleme veya etiketleme yapılmadan optiksel alanla biyotanıyıcı eleman etkileşiminin optik sinyallerle belirlenerek doğrudan veya endirekt tespitlerin yapılabildiği yüzey plazmon rezonans (SPR) ve fiber optik biyosensör (FOB) esaslı olanları ön plana çıkmıştır. SPR ve FO biyosensörleri ile sırasıyla 102-106 kob/ml ve ≤101-103 kob/ml aralıklarında doğrudan tespit yapılabilmektedir.

References

  • Abdelhaseib MU, Singh AK, Bailey M et al. (2016). Fiber optic and light scattering sensors: Complimentary approaches to rapid detection of Salmonella enterica in food samples. Food Control 61, 135-145.Aguilar ZP, Fritsch I (2003). Immobilized enzyme-linked DNA-hybridization assay with electrochemical detection for Cryptosporidium parvum hsp70 mRNA. Anal Chem 75, 3890-3897.Ahmad M, Hench LL (2005). Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers. Biosens Bioelectron 20, 1312-1319.Anderson GP, Golden JP, Ligler FS (1993). A Fiber Optic Biosensor - Combination Tapered Fibers Designed for Improved Signal Acquisition. Biosens Bioelectron 8, 249-256.Arora P, Sindhu A, Dilbaghi N et al. (2011). Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 28, 1-12.Bergwerff AA, Van Knapen F (2006). Surface plasmon resonance biosensors for detection of pathogenic microorganisms: Strategies to secure food and environmental safety. J Aoac Int 89, 826-831.Buck JA (1995). Fundamentals of Optical Fibers, A John Wiley & Sons. Inc., New York.Bures J, Ghosh R (1999). JOSA A. JOSA A 16, 1992-1996.Chen GY (2004). Profile optimization of tapered waveguide sensors by fluorescence imaging. P Soc Photo-Opt Ins 5589, 70-77.Chlebicz A, Slizewska K (2018). Campylobacteriosis, Salmonellosis, Yersiniosis, and Listeriosis as Zoonotic Foodborne Diseases: A Review. Int J Env Res Pub He 15.Díaz-Herrera N, Navarrete M, Esteban O et al. (2003). A fibre-optic temperature sensor based on the deposition of a thermochromic material on an adiabatic taper. Meas Sci Technol 15, 353.Dover JE, Hwang GM, Mullen EH et al. (2009). Recent advances in peptide probe-based biosensors for detection of infectious agents. J Microbiol Methods 78, 10-19.Geng T, Morgan MT, Bhunia AK (2004). Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor. Appl Environ Microb 70, 6138-6146.Guo S, Albin S (2003). Transmission property and evanescent wave absorption of cladded multimode fiber tapers. Opt Express 11, 215-223.Hearty S, Leonard P, Quinn J et al. (2006). Production, characterisation and potential application of a novel monoclonal antibody for rapid identification of virulent Listeria monocytogenes. J Microbiol Methods 66, 294-312.Iqbal SS, Mayo MW, Bruno JG et al. (2000). A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron 15, 549-578.Joung HA, Shim WB, Chung DH et al. (2007). Screening of a specific monoclonal antibody against and detection of Listeria monocytogenes whole cells using a surface plasmon resonance biosensor. Biotechnol Bioproc E 12, 80-85.Kharat HJ, Kakde KP, Shirale DJ et al. (2006). Designing of optical fiber sensing probe. Fiber Integrated Opt 25, 411-422.Kim G, Morgan MT, Ess D et al. (2006). Detection of Listeria monocytogenes using an automated fiber-optic biosensor: RAPTOR. Key Eng Mater 321-323, 1168-1171.Koubova V, Brynda E, Karasova L et al. (2001). Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensor Actuat B-Chem 74, 100-105.Lathrop AA, Jaradat ZW, Haley T et al. (2003). Characterization and application of a Listeria monocytogenes reactive monoclonal antibody C11E9 in a resonant mirror biosensor. J Immunol Methods 281, 119-128.Lee CK, Itoh T, Ohashi T et al. (1997). Development of a piezoelectric self-excitation and self-detection mechanism in PZT microcantilevers for dynamic scanning force microscopy in liquid. J Vac Sci Technol B 15, 1559-1563.Leonard P, Hearty S, Quinn J et al. (2004). A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron 19, 1331-1335.Mackenzie HS, Payne FP (1990). Evanescent Field Amplification in a Tapered Single-Mode Optical Fiber. Electron Lett 26, 130-132.Marusov G, Sweatt A, Pietrosimone K et al. (2012). A Microarray Biosensor for Multiplexed Detection of Microbes Using Grating-Coupled Surface Plasmon Resonance Imaging. Environ Sci Technol 46, 348-359.Mignani AG, Falciai R, Ciaccheri L (1998). Evanescent wave absorption spectroscopy by means of bi-tapered multimode optical fibers. Appl Spectrosc 52, 546-551.Mor-Mur M, Yuste J (2010). Emerging Bacterial Pathogens in Meat and Poultry: An Overview. Food Bioprocess Tech 3, 24-35.Nanduri V, Bhunia AK, Tu SI et al. (2007). SPR biosensor for the detection of L.monocytogenes using phage-displayed antibody. Biosens Bioelectron 23, 248-252.Nanduri V, Kim G, Morgan M et al. (2006). Antibody immobilization on waveguides using aflow–through system shows improved Listeria monocytogenes detection in an automated fiber optic biosensor: RAPTORTM. Sensors 6, 808-822.Ohk SH, Bhunia AK (2013). Multiplex fiber optic biosensor for detection of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica from ready-to-eat meat samples. Food Microbiol 33, 166-171.Ohk SH, Koo OK, Sen T et al. (2010). Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol 109, 808-817.Poltronieri P, de Blasi MD, D'Urso OF (2009). Detection of Listeria monocytogenes through real-time PCR and biosensor methods. Plant Soil Environ 55, 363-369.Rich RL, Myszka DG (2001). BIACORE J: a new platform for routine biomolecular interaction analysis. J Mol Recognit 14, 223-228.Rijal K, Leung A, Shankar PM et al. (2005). Detection of pathogen Escherichia coli O157: H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors. Biosens Bioelectron 21, 871-880.Schmelcher M, Shabarova T, Eugster MR et al. (2010). Rapid Multiplex Detection and Differentiation of Listeria Cells by Use of Fluorescent Phage Endolysin Cell Wall Binding Domains. Appl Environ Microb 76, 5745-5756.Shankaran DR, Gobi KVA, Miura N (2007). Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensor Actuat B-Chem 121, 158-177.Sharma H, Mutharasan R (2013). Review of biosensors for foodborne pathogens and toxins. Sensor Actuat B-Chem 183, 535-549.Sheeba M, Rajesh M, Vallabhan CPG et al. (2005). Fibre optic sensor for the detection of adulterant traces in coconut oil. Meas Sci Technol 16, 2247-2250.Sireli UT, Erol I (1999). Detection of listeria species in minced beef. Turk J Vet Anim Sci 23, 373-380.Soni DK, Ahmad R, Dubey SK (2018). Biosensor for the detection of Listeria monocytogenes: emerging trends. Crit Rev Microbiol 44, 590-608.Taylor AD, Ladd J, Yu Q et al. (2006). Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron 22, 752-758.Tims TB, Dickey SS, Demarco DR et al. (2001). Detection of low levels of Listeria monocytogenes within 20 hours using an evanescent wave biosensor. Am Clin Lab 20, 28-29.Tubb AJC, Payne FP, Millington RB et al. (1997). Single-mode optical fibre surface plasma wave chemical sensor. Sensor Actuat B-Chem 41, 71-79.Turner AP (2000). Biosensors--sense and sensitivity. Science 290, 1315-1317.Villatoro J, Luna-Moreno D, Monzon-Hernandez D (2005). Optical fiber hydrogen sensor for concentrations below the lower explosive limit. Sensor Actuat B-Chem 110, 23-27.Walland J, Lauper J, Frey J et al. (2015). Listeria monocytogenes infection in ruminants: Is there a link to the environment, food and human health? A review. Schweiz Arch Tierh 157, 319-328.Wang H, Li YB, Slavik M (2007). Rapid detection of Listeria monocytogenes using quantum dots and nanobeads-based optical biosensor. J Rapid Meth Aut Mic 15, 67-76.Zhang XG, Kitaoka H, Tsuni S et al. (2014). Development of a Simultaneous Detection Method for Foodborne Pathogens Using Surface Plasmon Resonance Biosensors. Food Sci Technol Res 20, 317-325.
There are 1 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Derleme
Authors

Özmen Biberoğlu

Publication Date March 12, 2020
Submission Date November 7, 2019
Acceptance Date March 3, 2020
Published in Issue Year 2020 Volume: 31 Issue: 1

Cite

APA Biberoğlu, Ö. (2020). The Determination of Listeria monocytogenes in Foods with Optical Biosensors. Van Veterinary Journal, 31(1), 50-55. https://doi.org/10.36483/vanvetj.643925
AMA Biberoğlu Ö. The Determination of Listeria monocytogenes in Foods with Optical Biosensors. Van Vet J. March 2020;31(1):50-55. doi:10.36483/vanvetj.643925
Chicago Biberoğlu, Özmen. “The Determination of Listeria Monocytogenes in Foods With Optical Biosensors”. Van Veterinary Journal 31, no. 1 (March 2020): 50-55. https://doi.org/10.36483/vanvetj.643925.
EndNote Biberoğlu Ö (March 1, 2020) The Determination of Listeria monocytogenes in Foods with Optical Biosensors. Van Veterinary Journal 31 1 50–55.
IEEE Ö. Biberoğlu, “The Determination of Listeria monocytogenes in Foods with Optical Biosensors”, Van Vet J, vol. 31, no. 1, pp. 50–55, 2020, doi: 10.36483/vanvetj.643925.
ISNAD Biberoğlu, Özmen. “The Determination of Listeria Monocytogenes in Foods With Optical Biosensors”. Van Veterinary Journal 31/1 (March 2020), 50-55. https://doi.org/10.36483/vanvetj.643925.
JAMA Biberoğlu Ö. The Determination of Listeria monocytogenes in Foods with Optical Biosensors. Van Vet J. 2020;31:50–55.
MLA Biberoğlu, Özmen. “The Determination of Listeria Monocytogenes in Foods With Optical Biosensors”. Van Veterinary Journal, vol. 31, no. 1, 2020, pp. 50-55, doi:10.36483/vanvetj.643925.
Vancouver Biberoğlu Ö. The Determination of Listeria monocytogenes in Foods with Optical Biosensors. Van Vet J. 2020;31(1):50-5.

88x31.png

Accepted papers are licensed under Creative Commons Attribution-NonCommercial 4.0 International License