Review
BibTex RIS Cite

Immunological and Antimicrobial Effects of Autologous Platelet Concentrates

Year 2022, Volume: 33 Issue: 2, 62 - 66, 28.07.2022
https://doi.org/10.36483/vanvetj.1054166

Abstract

Antibiotic resistance has remarkable potential in human beings and veterinary medicine. However, to prevent the clinical reflection of this resistance from reaching the feared dimensions, there is a requirement for antimicrobial treatment options supported and improved with new molecular biocursors at the preclinical point. Platelet-rich plasma (PRP) and fibrin (PRF) are biomaterial products that recently used to increase the anti-infective defense system by platelet growth factors to support postoperative wound healing, bone regeneration, graft stabilization, biofilm inhibition, catheter hygiene, and hemostasis. Recently, research has been carried out on antibacterial, antifungal, and prevention of clinical biofilm formation. Autologous platelet concentrates are autogenous and do not cause any immunological reaction or infection. Therefore, the choice and application of regenerative therapies are being favored due to their nominal invasive procedures. In particular, PRP and PRF are of interest because of their influence to stimulate and speed up the injury area healing process. Cytokines and growth factors involved in the formation of PRP are played an important role in the recovery process. This article aims to evaluate the antibacterial, antifungal and antibiofilm properties of PRP and PRF in the field of microbiology. In addition, the act of growth factors in the process of healing and their use in regenerative treatments were also evaluated.

References

  • Aktan İ, Dunkel B, Cunningham FM (2013). Equine platelets inhibit E. coli growth and can be activated by bacterial lipopolysaccharide and lipoteichoic acid although superoxide anion production does not occur and platelet activation is not associated with enhanced production by neutrophils. Vet Immunol Immunopathol, 152, 209-17.
  • Anitua E, Alkhraisat MH, Orive G (2012). Perspectives and challenges in regenerative medicine using plasma rich in growth factors. J Control Release, 157 (1), 29-38.
  • Attili AR, Iacoucci C, Serri E et al. (2021). Antibacterial properties of canine platelet-rich plasma and other non-transfusional hemo-components: An in vitro study. Front Vet Sci, 4 (8), 746809. Balaram N, Karunakar P, Jayadev M, Marshal VR (2013). Role of Platelet rich fibrin in wound healing: A critical review. J Conserv Dent, 16 (4), 284-293.
  • Bjarnsholt T (2013). The role of bacterial biofilms in chronic infections. APMIS, (136), 1-51.
  • Carr BJ, Canapp SO, Mason DR, Cox C, Hess T (2016). Canine Platelet-Rich Plasma Systems: A Prospective Analysis. Front Vet Sci, 5 (2), 73.
  • Castro AB, Herrero ER, Slomka V et al. (2019). Antimicrobial capacity of leucocyte-and Platelet Rich Fibrin against periodontal pathogens. Sci Rep, 9, 81-88.
  • Chicharro-Alcántara D, Rubio-Zaragoza M, Damiá-Giménez E et al. (2018). Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management. J Funct Biomater, 9 (1), 10.
  • Cieślik-Bielecka A, Bold T, Ziółkowski G et al. (2018). Antibacterial activity of leukocyte and Platelet-Rich Plasma: An in vitro study. Biomed Res Int, 27, 9471723.
  • Davis VL, Abukabda AB, Radio NM et al. (2014). Platelet-rich preparations to improve healing. Part II: platelet activation and enrichment, leukocyte inclusion, and other selection criteria. J Oral Implantol, 40 (4), 511-521.
  • Drago L, Bortolin M, Vassena C, Romanò CL, Taschieri S, Del Fabbro M (2014). Plasma components and platelet activation are essential for the antimicrobial properties of autologous platelet-rich plasma: an in vitro study. PLoS One, 9 (9), e107813.
  • Everts P, Onishi K, Jayaram P, Lana JF, Mautner K (2020). Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci, 21 (20), 7794.
  • Farghali HA, AbdelKader NA, AbuBakr HO et al. (2019). Antimicrobial action of autologous platelet-rich plasma on MRSA-infected skin wounds in dogs. Sci Rep, 9 (1), 12722.
  • Feng M, Wang Y, Zhang P et al. (2020). Antibacterial effects of platelet-rich fibrin produced by horizontal centrifugation. Int J Oral Sci, 12, 32.
  • Golebiewska EM, Poole AW (2015). Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev, 29 (3), 153-162.
  • Gürel BÇ, Ayaz G, Tuncel H et al. (2020). Statik manyetik alanın trombosit agregasyonuna etkisi. SABİAD, 3 (3), 173-178.
  • Hatakeyama I, Marukawa E, Takahashi Y, Omura K (2014). Effects of platelet-poor plasma, platelet-rich plasma, and platelet-rich fibrin on healing of extraction sockets with buccal dehiscence in dogs. Tissue Eng, 20 (3-4), 874-882.
  • Kazemi D, Fakhrjou A, Dizaji VM, Alishahi MK (2014). Effect of autologous platelet rich fibrin on the healing of experimental articular cartilage defects of the knee in an animal model. BioMed Res Int, 486436.
  • Kour P, Pudakalkatti PS, Vas AM, Das S, Padmanabhan S (2018). Comparative evaluation of antimicrobial efficacy of platelet-rich plasma, platelet-rich fibrin, and injectable platelet-rich fibrin on the standard strains of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Cont Clin Dent, 9 (2), 325-330.
  • Li H, Hamza T, Tidwell JE, Clovis N, Li B (2013). Unique antimicrobial effects of platelet-rich plasma and its efficacy as a prophylaxis to prevent implant-associated spinal infection. Adv Healthc Mater, 2 (9), 1277-84.
  • Lopez C, Carmona J, Giraldo C, Alvarez M (2014). Bacteriostatic effect of equine pure platelet rich plasma and other blood products against methicillin-sensitive Staphylococcus aureus. Vet Comp Orthopaed, 27, 372.
  • Mariani E, Canella V, Berlingeri A et al. (2015). Leukocyte presence does not increase microbicidal activity of Platelet-rich Plasma in vitro. BMC Microbiol, 15, 149.
  • Mariani E, Filardo G, Canella V et al. (2014). Platelet-rich plasma affects bacterial growth in vitro. Cytotherapy, 16 (9), 1294-304.
  • Mariani E, Roffi A, Cattini L et al. (2020). Release kinetic of pro- and anti-inflammatory biomolecules from platelet-rich plasma and functional study on osteoarthritis synovial fibroblasts. Cytotherapy, 22 (7), 344-353.
  • Marini MG, Perrini C, Esposti C et al. (2016). Effects of platelet-rich plasma in a model of bovine endometrial inflammation in vitro. Reprod Biol Endocrinol, 14 (1), 58.
  • McLellan J, Plevin S (2014). Temporal release of growth factors from platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) in the horse: a comparative in vitro analysis. Intern J Appl Res Vet Med,12 (1), 44-53.
  • Mussano F, Genova T, Munaron L et al. (2016). Cytokine, chemokine, and growth factor profile of platelet-rich plasma. Platelets, 27 (5), 467-71.
  • Nagaraja S, Mathew S, Jain N et al. (2019). Study of antibacterial and antifungal efficacy of platelet-rich fibrin and platelet-rich fibrin matrix. J Conserv Dent, 22 (5), 415-419.
  • Perego R, Eva S, Luciana B, Piera AM, Daniela P (2020). Efficacy of a semi automated commercial closed system for autologous leukocyte-and platelet-rich plasma (l-prp) production in dogs: A preliminary study. Animals, 10 (8), 1342.
  • Perego R, Spada E, Moneta E, Baggiani L, Proverbio D (2021). Use of autologous leucocyte- and platelet-richplasma (L-prp) in the treatment of aural hematoma in dogs. Vet Sci, 8, 172.
  • Piao L, Park H, Jo CH (2017). Theoretical prediction and validation of cell recovery rates in preparing platelet-rich plasma through a centrifugation. PLoS One,12 (11), e0187509.
  • Raeissadat SA, Babaee M, Rayegani SM et al. (2017). An overview of platelet products (PRP, PRGF, PRF, etc.) in the Iranian studies. Future Sci OA, 3 (4), FSO231.
  • Sánchez-González DJ, Méndez-Bolaina E, Trejo-Bahena NI (2012). Platelet-Rich Plasma Peptides: Key for regeneration. Int J Pept, 2012, 532519.
  • Serafini G, Mariangela L, Marco L et al. (2020). Platelet Rich Fibrin (PRF) and its related products: Biomolecular characterization of the liquid fibrinogen. J Clin Med, 9 (4), 1099.
  • Sharmila J, Thangavelu A, Janarthanan K, Rajapandiyan K, Alshatwi AA, (2020). Antimicrobial and antibiofilm potential of injectable platelet rich fibrin-a second-generation platelet concentrate-against biofilm producing oral Staphylococcus isolates. Saudi J Biol Sci, 27 (1), 41-46.
  • Soares CS, Babo PS, Reis RL, Carvalho PP, Gomes ME (2021). Platelet-Derived products in veterinary medicine: a new trend or an effective therapy?. Trends Biotechnol, 39 (3), 225-243.
  • Speth C, Löffler J, Krappmann S, Lass-Flörl C, Rambach G (2013). Platelets as immune cells in infectious diseases. Future Microbiol, 8 (11), 1431-1451.
  • TGA (2019). Therapeutic goods administration, Australian government department of health. Regulation of platelet-rich plasma (PRP), platelet-rich fibrin (PRF) and conditioned serum. Date of access: 29 Dec. 2021. https://www.tga.gov.au/regulation-platelet-rich-plasma-prp-platelet-rich-fibrin-prf-and-conditioned-serum.
  • Tyrnenopoulou P, Diakakis N, Karayannopoulou M, Savvas I, Koliakos G (2016). Evaluation of intra-articular injection of autologous platelet lysate (PL) in horses with osteoarthritis of the distal interphalangeal joint. Vet Q, 36 (2), 56-62.
  • Wachowicz B, Morel A, Miller E, Saluk J (2016). The physiology of blood platelets a nd changes of their biological activities in multiple sclerosis. Acta Neurobio Exp, 76, 269-81.
  • Wu X, Ren J, Yuan Y, Luan J, Yao G, Li J (2013). Antimicrobial properties of single-donor-derived, platelet-leukocyte fibrin for fistula occlusion: an in vitro study. Platelets, 24, 632-6.
  • Yadav S, Storrie B (2017). The cellular basis of platelet secretion: Emerging structure/function relationships. Platelets, 28 (2), 108-118. Zhang W, Guo Y, Kuss M et al. (2019). Platelet-Rich Plasma for the treatment of tissue infection: Preparation and clinical evaluation. Tissue Eng Rev, 25 (3), 225-236.

Otolog Trombosit Konsantrelerinin İmmunolojik ve Antimikrobiyal Etkileri

Year 2022, Volume: 33 Issue: 2, 62 - 66, 28.07.2022
https://doi.org/10.36483/vanvetj.1054166

Abstract

Antibiyotik direnci, insan ve veteriner tıbbında dikkate değer bir potansiyele sahiptir. Ancak bu direncin klinik yansımasının korkulan boyutlara ulaşmasını önlemek için preklinik noktada yeni moleküler biyokürsörlerle desteklenen ve geliştirilen antimikrobiyal tedavi seçeneklerine ihtiyaç vardır. Platelet zengin plazma (PRP) ve platelet zengin fibrin (PRF), postoperatif yara iyileşmesini, kemik rejenerasyonunu, greft stabilizasyonunu, biyofilm inhibisyonunu, kateter hijyenini ve hemostazı desteklemek için trombosit büyüme faktörleri ile anti-enfektif savunma sistemini artırmak için son zamanlarda kullanılan biyomateryal ürünlerdir. Son zamanlarda antibakteriyel, antifungal ve klinik biyofilm oluşumunun önlenmesi üzerine araştırmalar yapılmaktadır. Otolog trombosit konsantreleri otojendir ve herhangi bir immünolojik reaksiyona veya enfeksiyona neden olmaz. Bu nedenle, nominal invaziv prosedürleri nedeniyle rejeneratif tedavilerin seçimi ve uygulanması tercih edilmektedir. Özellikle PRP ve PRF, yara iyileşme sürecini uyarma ve hızlandırma etkileri nedeniyle ilgi görmektedir. PRP oluşumunda rol oynayan sitokinler ve büyüme faktörleri iyileşme sürecinde önemli rol oynamaktadır. Bu makale, mikrobiyoloji alanında PRP ve PRF'nin antibakteriyel, antifungal ve antibiyofilm özelliklerini değerlendirmeyi amaçlamaktadır. Ayrıca büyüme faktörlerinin iyileşme sürecindeki etkisi ve rejeneratif tedavilerde kullanımları da değerlendirilmiştir.

References

  • Aktan İ, Dunkel B, Cunningham FM (2013). Equine platelets inhibit E. coli growth and can be activated by bacterial lipopolysaccharide and lipoteichoic acid although superoxide anion production does not occur and platelet activation is not associated with enhanced production by neutrophils. Vet Immunol Immunopathol, 152, 209-17.
  • Anitua E, Alkhraisat MH, Orive G (2012). Perspectives and challenges in regenerative medicine using plasma rich in growth factors. J Control Release, 157 (1), 29-38.
  • Attili AR, Iacoucci C, Serri E et al. (2021). Antibacterial properties of canine platelet-rich plasma and other non-transfusional hemo-components: An in vitro study. Front Vet Sci, 4 (8), 746809. Balaram N, Karunakar P, Jayadev M, Marshal VR (2013). Role of Platelet rich fibrin in wound healing: A critical review. J Conserv Dent, 16 (4), 284-293.
  • Bjarnsholt T (2013). The role of bacterial biofilms in chronic infections. APMIS, (136), 1-51.
  • Carr BJ, Canapp SO, Mason DR, Cox C, Hess T (2016). Canine Platelet-Rich Plasma Systems: A Prospective Analysis. Front Vet Sci, 5 (2), 73.
  • Castro AB, Herrero ER, Slomka V et al. (2019). Antimicrobial capacity of leucocyte-and Platelet Rich Fibrin against periodontal pathogens. Sci Rep, 9, 81-88.
  • Chicharro-Alcántara D, Rubio-Zaragoza M, Damiá-Giménez E et al. (2018). Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management. J Funct Biomater, 9 (1), 10.
  • Cieślik-Bielecka A, Bold T, Ziółkowski G et al. (2018). Antibacterial activity of leukocyte and Platelet-Rich Plasma: An in vitro study. Biomed Res Int, 27, 9471723.
  • Davis VL, Abukabda AB, Radio NM et al. (2014). Platelet-rich preparations to improve healing. Part II: platelet activation and enrichment, leukocyte inclusion, and other selection criteria. J Oral Implantol, 40 (4), 511-521.
  • Drago L, Bortolin M, Vassena C, Romanò CL, Taschieri S, Del Fabbro M (2014). Plasma components and platelet activation are essential for the antimicrobial properties of autologous platelet-rich plasma: an in vitro study. PLoS One, 9 (9), e107813.
  • Everts P, Onishi K, Jayaram P, Lana JF, Mautner K (2020). Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci, 21 (20), 7794.
  • Farghali HA, AbdelKader NA, AbuBakr HO et al. (2019). Antimicrobial action of autologous platelet-rich plasma on MRSA-infected skin wounds in dogs. Sci Rep, 9 (1), 12722.
  • Feng M, Wang Y, Zhang P et al. (2020). Antibacterial effects of platelet-rich fibrin produced by horizontal centrifugation. Int J Oral Sci, 12, 32.
  • Golebiewska EM, Poole AW (2015). Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev, 29 (3), 153-162.
  • Gürel BÇ, Ayaz G, Tuncel H et al. (2020). Statik manyetik alanın trombosit agregasyonuna etkisi. SABİAD, 3 (3), 173-178.
  • Hatakeyama I, Marukawa E, Takahashi Y, Omura K (2014). Effects of platelet-poor plasma, platelet-rich plasma, and platelet-rich fibrin on healing of extraction sockets with buccal dehiscence in dogs. Tissue Eng, 20 (3-4), 874-882.
  • Kazemi D, Fakhrjou A, Dizaji VM, Alishahi MK (2014). Effect of autologous platelet rich fibrin on the healing of experimental articular cartilage defects of the knee in an animal model. BioMed Res Int, 486436.
  • Kour P, Pudakalkatti PS, Vas AM, Das S, Padmanabhan S (2018). Comparative evaluation of antimicrobial efficacy of platelet-rich plasma, platelet-rich fibrin, and injectable platelet-rich fibrin on the standard strains of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Cont Clin Dent, 9 (2), 325-330.
  • Li H, Hamza T, Tidwell JE, Clovis N, Li B (2013). Unique antimicrobial effects of platelet-rich plasma and its efficacy as a prophylaxis to prevent implant-associated spinal infection. Adv Healthc Mater, 2 (9), 1277-84.
  • Lopez C, Carmona J, Giraldo C, Alvarez M (2014). Bacteriostatic effect of equine pure platelet rich plasma and other blood products against methicillin-sensitive Staphylococcus aureus. Vet Comp Orthopaed, 27, 372.
  • Mariani E, Canella V, Berlingeri A et al. (2015). Leukocyte presence does not increase microbicidal activity of Platelet-rich Plasma in vitro. BMC Microbiol, 15, 149.
  • Mariani E, Filardo G, Canella V et al. (2014). Platelet-rich plasma affects bacterial growth in vitro. Cytotherapy, 16 (9), 1294-304.
  • Mariani E, Roffi A, Cattini L et al. (2020). Release kinetic of pro- and anti-inflammatory biomolecules from platelet-rich plasma and functional study on osteoarthritis synovial fibroblasts. Cytotherapy, 22 (7), 344-353.
  • Marini MG, Perrini C, Esposti C et al. (2016). Effects of platelet-rich plasma in a model of bovine endometrial inflammation in vitro. Reprod Biol Endocrinol, 14 (1), 58.
  • McLellan J, Plevin S (2014). Temporal release of growth factors from platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) in the horse: a comparative in vitro analysis. Intern J Appl Res Vet Med,12 (1), 44-53.
  • Mussano F, Genova T, Munaron L et al. (2016). Cytokine, chemokine, and growth factor profile of platelet-rich plasma. Platelets, 27 (5), 467-71.
  • Nagaraja S, Mathew S, Jain N et al. (2019). Study of antibacterial and antifungal efficacy of platelet-rich fibrin and platelet-rich fibrin matrix. J Conserv Dent, 22 (5), 415-419.
  • Perego R, Eva S, Luciana B, Piera AM, Daniela P (2020). Efficacy of a semi automated commercial closed system for autologous leukocyte-and platelet-rich plasma (l-prp) production in dogs: A preliminary study. Animals, 10 (8), 1342.
  • Perego R, Spada E, Moneta E, Baggiani L, Proverbio D (2021). Use of autologous leucocyte- and platelet-richplasma (L-prp) in the treatment of aural hematoma in dogs. Vet Sci, 8, 172.
  • Piao L, Park H, Jo CH (2017). Theoretical prediction and validation of cell recovery rates in preparing platelet-rich plasma through a centrifugation. PLoS One,12 (11), e0187509.
  • Raeissadat SA, Babaee M, Rayegani SM et al. (2017). An overview of platelet products (PRP, PRGF, PRF, etc.) in the Iranian studies. Future Sci OA, 3 (4), FSO231.
  • Sánchez-González DJ, Méndez-Bolaina E, Trejo-Bahena NI (2012). Platelet-Rich Plasma Peptides: Key for regeneration. Int J Pept, 2012, 532519.
  • Serafini G, Mariangela L, Marco L et al. (2020). Platelet Rich Fibrin (PRF) and its related products: Biomolecular characterization of the liquid fibrinogen. J Clin Med, 9 (4), 1099.
  • Sharmila J, Thangavelu A, Janarthanan K, Rajapandiyan K, Alshatwi AA, (2020). Antimicrobial and antibiofilm potential of injectable platelet rich fibrin-a second-generation platelet concentrate-against biofilm producing oral Staphylococcus isolates. Saudi J Biol Sci, 27 (1), 41-46.
  • Soares CS, Babo PS, Reis RL, Carvalho PP, Gomes ME (2021). Platelet-Derived products in veterinary medicine: a new trend or an effective therapy?. Trends Biotechnol, 39 (3), 225-243.
  • Speth C, Löffler J, Krappmann S, Lass-Flörl C, Rambach G (2013). Platelets as immune cells in infectious diseases. Future Microbiol, 8 (11), 1431-1451.
  • TGA (2019). Therapeutic goods administration, Australian government department of health. Regulation of platelet-rich plasma (PRP), platelet-rich fibrin (PRF) and conditioned serum. Date of access: 29 Dec. 2021. https://www.tga.gov.au/regulation-platelet-rich-plasma-prp-platelet-rich-fibrin-prf-and-conditioned-serum.
  • Tyrnenopoulou P, Diakakis N, Karayannopoulou M, Savvas I, Koliakos G (2016). Evaluation of intra-articular injection of autologous platelet lysate (PL) in horses with osteoarthritis of the distal interphalangeal joint. Vet Q, 36 (2), 56-62.
  • Wachowicz B, Morel A, Miller E, Saluk J (2016). The physiology of blood platelets a nd changes of their biological activities in multiple sclerosis. Acta Neurobio Exp, 76, 269-81.
  • Wu X, Ren J, Yuan Y, Luan J, Yao G, Li J (2013). Antimicrobial properties of single-donor-derived, platelet-leukocyte fibrin for fistula occlusion: an in vitro study. Platelets, 24, 632-6.
  • Yadav S, Storrie B (2017). The cellular basis of platelet secretion: Emerging structure/function relationships. Platelets, 28 (2), 108-118. Zhang W, Guo Y, Kuss M et al. (2019). Platelet-Rich Plasma for the treatment of tissue infection: Preparation and clinical evaluation. Tissue Eng Rev, 25 (3), 225-236.
There are 41 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Derleme
Authors

Volkan Özavcı 0000-0003-3511-3008

Şükrü Kırkan 0000-0001-5111-8656

Publication Date July 28, 2022
Submission Date January 6, 2022
Acceptance Date June 13, 2022
Published in Issue Year 2022 Volume: 33 Issue: 2

Cite

APA Özavcı, V., & Kırkan, Ş. (2022). Immunological and Antimicrobial Effects of Autologous Platelet Concentrates. Van Veterinary Journal, 33(2), 62-66. https://doi.org/10.36483/vanvetj.1054166
AMA Özavcı V, Kırkan Ş. Immunological and Antimicrobial Effects of Autologous Platelet Concentrates. Van Vet J. July 2022;33(2):62-66. doi:10.36483/vanvetj.1054166
Chicago Özavcı, Volkan, and Şükrü Kırkan. “Immunological and Antimicrobial Effects of Autologous Platelet Concentrates”. Van Veterinary Journal 33, no. 2 (July 2022): 62-66. https://doi.org/10.36483/vanvetj.1054166.
EndNote Özavcı V, Kırkan Ş (July 1, 2022) Immunological and Antimicrobial Effects of Autologous Platelet Concentrates. Van Veterinary Journal 33 2 62–66.
IEEE V. Özavcı and Ş. Kırkan, “Immunological and Antimicrobial Effects of Autologous Platelet Concentrates”, Van Vet J, vol. 33, no. 2, pp. 62–66, 2022, doi: 10.36483/vanvetj.1054166.
ISNAD Özavcı, Volkan - Kırkan, Şükrü. “Immunological and Antimicrobial Effects of Autologous Platelet Concentrates”. Van Veterinary Journal 33/2 (July 2022), 62-66. https://doi.org/10.36483/vanvetj.1054166.
JAMA Özavcı V, Kırkan Ş. Immunological and Antimicrobial Effects of Autologous Platelet Concentrates. Van Vet J. 2022;33:62–66.
MLA Özavcı, Volkan and Şükrü Kırkan. “Immunological and Antimicrobial Effects of Autologous Platelet Concentrates”. Van Veterinary Journal, vol. 33, no. 2, 2022, pp. 62-66, doi:10.36483/vanvetj.1054166.
Vancouver Özavcı V, Kırkan Ş. Immunological and Antimicrobial Effects of Autologous Platelet Concentrates. Van Vet J. 2022;33(2):62-6.

88x31.png

Accepted papers are licensed under Creative Commons Attribution-NonCommercial 4.0 International License