Research Article
BibTex RIS Cite

Sığır Fekal Örneklerinden Salmonella spp. ve Escherichia coli O157:H7’ye Özgü Bakteriyofaj Varlığının Araştırılması

Year 2023, Volume: 34 Issue: 3, 251 - 255, 27.11.2023
https://doi.org/10.36483/vanvetj.1315469

Abstract

Salmonella Typhimurium (S. Typhimurium) ve Escherichia coli (E. coli) O157:H7, virülanslarına, antimikrobiyal dirençlerine ve yüzeylerde hayatta kalmalarına katkıda bulunan bakteriyel biyofilmler oluşturan ve dünya çapında ciddi gıda zehirlenmelerine neden olan önemli gıda kaynaklı patojenlerdir. Bakteriyofajlar, gıda kaynaklı patojenleri kontrol etmek adına her geçen gün artarak kullanılan antibakteriyel maddeler olup ayrıca antibiyotik direncin gelişmesine karşı çözümde rol oynamaktadır. Ayrıca bakteriyofajlar atık sularda, doğada ve hayvansal atıklarda olabileceği gibi birçok gıda maddesinde bulunmaktadır. Bu çalışmanın amacı sığır altlıklarından alınan dışkı örnekleri kullanılarak ülkemizde ve dünyada sık rastlanan Salmonella türleri. ve E. coli infeksiyonları ile mücadele etmede etkili olabilecek, ülkemizde sirküle olan Salmonella spp. ve E. coli spesifik spot test ile fajların purifikasyonu ve litik etkilerinin belirlenmesi amaçlanmıştır. Bu çalışmada 3 tane S. Typhimurium ve 1 tane E. coli O157:H7 bakteriyofajları izole edilerek, litik aktiviteleri belirlenmiştir. Sonuç olarak bu çalışmada Aksaray ilinden pürifiye edilen Salmonella Typhimurium ve E. coli O157:H7 bakteriyofajlarının tespit edilen litik aktiviteleri ile Salmonella Typhimurium ve E. coli O157:H7 kaynaklı enfeksiyonların tedavisi ve gıda endüstrisinde korunma çalışmalarına ışık tutabileceği düşünülmektedir.

References

  • Akhtar M, Viazis S, Diez-Gonzalez F (2014). Isolation, identification and characterization of lytic, wide host range bacteriophages from waste effluents against Salmonella enterica serovars. Food Control, 38, 67–74.
  • Ang-Kucuker M, Tolun V, Helmuth Ret al. (2000). Phage types, antibiotic susceptibilities and plasmid profiles of Salmonella typhimurium and Salmonella enteritidis strains isolated in Istanbul, Turkey. Clin Microbiol Infect, 6 (11), 593–599.
  • Ao TT, Feasey NA, Gordon MA et al. (2015). Global Burden of Invasive Nontyphoidal Salmonella Disease. Emerg Infect Dis, 21 (6), 941–949.
  • Ata Z (2018). Türkiye’de Sık Rastlanan Salmonella Enteritidis Serovarlarına Spesifik Bakteriyofajların İzolasyonu. Etlik Vet. Mikrobiyoloji Derg, 29 (2), 136–142.
  • Atterbury RJ, Van Bergen MAP, Ortiz F, et al. (2007). Bacteriophage Therapy to Reduce Salmonella Colonization of Broiler Chickens. Appl Environ Microbiol, 73, 4543–4549.
  • Banin E, Hughes D, Kuipers OP (2017). Editorial: Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiol. Rev, 41 (3), 450–452.
  • Bourdin G, Navarro A, Sarker SA, et al. (2014). Coverage of diarrhoea-associated Escherichia coli isolates from different origins with two types of phage cocktails. Microb Biotechnol, 7 (2), 165–176.
  • CDC (2019). Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention (U.S.).
  • D’Andrea MM, Frezza D, Romano E et al. (2020). The lytic bacteriophage vB_EfaH_EF1TV, a new member of the Herelleviridae family, disrupts biofilm produced by Enterococcus faecalis clinical strains. J Glob Antimicrob Resist, 21, 68–75.
  • Duc HM, Son HM, Yi HPS et al. (2020). Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157:H7 in different food matrices. Food Res Int, 131, 108977.
  • Dueñas F, Rivera D, Toledo V et al. (2017). Short communication: Characterization of Salmonella phages from dairy calves on farms with a history of diarrhea. J Dairy Sci, 100 (3), 2196–2200.
  • EFSA (2021). The European Union One Health 2019 Zoonoses Report. EFSA J, 19, e06406.
  • Garrido-Maestu A, Fuciños P, Azinheiro S et al. (2019). Specific detection of viable Salmonella Enteritidis by phage amplification combined with qPCR (PAA-qPCR) in spiked chicken meat samples. Food Control, 99, 79–83.
  • Guglielmotti D, Mercanti D, Reinheimer J, Quiberoni ADL (2012). Review: Efficiency of Physical and Chemical Treatments on the Inactivation of Dairy Bacteriophages. Front Microbiol, 2, 282.
  • Hede K (2014). Antibiotic resistance: An infectious arms race. Nature, 509 (7498), S2–S3.
  • Higgins JP, Higgins SE, Guenther KL et al. (2005). Use of a specific bacteriophage treatment to reduce Salmonella in poultry products. Poult Sci, 84 (7), 1141–1145.
  • Holmfeldt K, Middelboe M, Nybroe O, Riemann L (2007). Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl Environ Microbiol, 73 (21), 6730–6739.
  • Jeon G, Ahn J (2021). Evaluation of phage adsorption to Salmonella Typhimurium exposed to different levels of pH and antibiotic. Microb Pathog, 150, 104726.
  • Kutateladze M, Adamia R (2010). Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol, 28 (12), 591–595.
  • LeLièvre V, Besnard A, Schlusselhuber M, Desmasures N, Dalmasso M (2019). Phages for biocontrol in foods: What opportunities for Salmonella sp. control along the dairy food chain? Food Microbiol, 78, 89–98.
  • Li Z, Wang Xiao Teng D, Mao R et al. (2018). Improved antibacterial activity of a marine peptide-N2 against intracellular Salmonella typhimurium by conjugating with cell-penetrating peptides-bLFcin6/Tat11. Eur J Med Chem, 145, 263–272.
  • Litt PK, Jaroni D (2017). Isolation and Physiomorphological Characterization of Escherichia coli O157:H7-Infecting Bacteriophages Recovered from Beef Cattle Operations. Int. J Microbiol, 2017, 1–12.
  • Lu M, Liu B, Xiong W, Liu X (2022). The Combination of Salmonella Phage ST-3 and Antibiotics to Prevent Salmonella Typhimurium In Vitro. Curr Microbiol, 79 (12), 371.
  • McFarland J (1907). Nephelometer: An Instrument For Estimating The Number Of Bacteria In Suspensions Used For Calculating The Opsonic Index And For Vaccines. J Am Med Assoc, 14, 1176-1178.
  • McLaughlin MR, Balaa MF, Sims J, King R (2006). Isolation of Salmonella Bacteriophages from Swine Effluent Lagoons. J Environ Qual, 35 (2), 522–528.
  • Naylor SW, Roe AJ, Nart P et al. (2005). Escherichia coli O157: H7 forms attaching and effacing lesions at the terminal rectum of cattle and colonization requires the LEE4 operon. Microbiol Read Engl, 151 (8), 2773–2781.
  • Olsen NS, Lametsch R, Wagner N, Hansen LH, Kot W (2022). Salmonella phage akira, infecting selected Salmonella enterica Enteritidis and Typhimurium strains, represents a new lineage of bacteriophages. Arch Virol, 167 (10), 2049–2056.
  • Petsong K, Benjakul S, Chaturongakul S, Switt AIM, Vongkamjan K (2019). Lysis Profiles of Salmonella Phages on Salmonella Isolates from Various Sources and Efficiency of a Phage Cocktail against S. Enteritidis and S. Typhimurium. Microorganisms, 7 (4), 100.
  • Rakhuba DV, Kolomiets EI, Dey ES, Novik GI (2010). Bacteriophage Receptors, Mechanisms of Phage Adsorption and Penetration into Host Cell Pol, J Microbiol, 59 (3), 145–155.
  • Ritter AC, Tondo EC, Siqueira FM et al. (2019). Genome analysis reveals insights into high-resistance and virulence of Salmonella Enteritidis involved in foodborne outbreaks. Int J Food Microbiol, 306, 108269.
  • Sahi̇n TS, Urganci N, Yildirim Z (2020). Lytıc Bacterıophages Effectıve Agaınst Escherichia coli O157:H7, A Foodborne Pathogen, 45 (4), 635–645.
  • Sambrook J, Fritsch EF, Maniatis T (1989). Molecular cloning: a laboratory manual. Mol Cloning Lab Man 4th. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 2012, 1209-1330.
  • Schoeni JL, Doyle MP (1994). Variable colonization of chickens perorally inoculated with Escherichia coli O157:H7 and subsequent contamination of eggs. Appl Environ Microbiol, 60 (8), 2958–2962.
  • Switt AIM, den Bakker HC, Vongkamjan K et al. (2013). Salmonella bacteriophage diversity reflects host diversity on dairy farms. Food Microbiol, 36 (2), 275–285.
  • Thung TY, Lee E, Mahyudin NA et al. (2019). Evaluation of a lytic bacteriophage for bio-control of Salmonella Typhimurium in different food matrices. LWT, 105, 211–214.
  • Viazis S, Akhtar M, Feirtag J, Brabban AD, Diez-Gonzalez F (2011). Isolation and characterization of lytic bacteriophages against enterohaemorrhagic Escherichia coli: Isolation and characterization of EHEC-phages. J Appl Microbiol, 110 (5), 1323–1331.
  • Wang X, Sun J, Zhao J, Zhou Z, Zhang Q, Wong C, Yao Y (2019). All-Solid-State Fiber-Shaped Asymmetric Supercapacitors with Ultrahigh Energy Density Based on Porous Vanadium Nitride Nanowires and Ultrathin Ni(OH) 2 Nanosheet Wrapped NiCo 2 O 4 Nanowires Arrays Electrode. J Phys Chem C, 123 (2), 985–993.
  • Wasteson Y (2001). Zoonotic Escherichia coli. Acta Vet. Scand Suppl, 95, 79–84.
  • Wolput S, Makumi A, Wicke L et al. (2022). Transcriptional Organization of the Salmonella Typhimurium Phage P22 pid ORFan Locus. Int J Mol Sci, 23 (3), 1253.
  • Yildirim Z, Sakіn T, Çoban F (2018) (a). Isolation of lytic bacteriophages infecting Salmonella Typhimurium and Salmonella Enteritidis. Acta Biol Hung, 69 (3), 350–369.
  • Yildirim Z, Sakin T, Çoban F (2018) (b). Isolation of Anti-Escherichia coli O157:H7 Bacteriophages and Determination of Their Host Ranges. Turk J Agric Food Sci Technol, 6 (9), 1200–1208.
  • Yim L, Betancor L, Martínez A, Bryant C, Maskell D, Chabalgoity JA (2011). Naturally occurring motility-defective mutants of Salmonella enterica serovar Enteritidis isolated preferentially from nonhuman rather than human sources. Appl Environ Microbiol, 77 (21), 7740–7748.
  • Zhu W, Ding Y, Huang C, Wang Ji Wang Jia Wang X (2022). Genomic characterization of a novel bacteriophage STP55 revealed its prominent capacity in disrupting the dual-species biofilm formed by Salmonella Typhimurium and Escherichia coli O157:H7 strains. Arch Microbiol, 204 (10), 597.

Investigation of Escherichia coli O157:H7 and Salmonella Bacteriophages in Cattle Fecal Sources

Year 2023, Volume: 34 Issue: 3, 251 - 255, 27.11.2023
https://doi.org/10.36483/vanvetj.1315469

Abstract

S. Typhimurium and E. coli O157:H7 are the most important foodborne pathogens forming bacterial biofilms that contribute to their virulence, antimicrobial resistance, and surface survival, causing severe food poisoning outbreaks worldwide. Bacteriophages are antibacterial agents that are increasingly used to control foodborne pathogens, and they also play a role in the solution against the development of antibiotic resistance. In addition, bacteriophages can be found in wastewater, natural and animal wastes, and foodstuffs. Aim of this study to determine the purification and lytic effects of Salmonella spp. and E. coli specific phages circulating in our country, which can effectively combat common Salmonella spp. and E. coli infections in our country and the world by using samples taken from the cowshed. In this study, 3 S. Typhimurium and 1 E. coli O157:H5 bacteriophages were isolated, and their lytic activities were determined. As a result, it is thought that the lytic activities of S. Typhimurium and E. coli O157:H7 bacteriophages purified from Aksaray province in this study can shed light on the treatment of S. Typhimurium and E. coli O157:H7 infections and prevention studies in the food industry.

Supporting Institution

This study was carried out without using financial resources.

References

  • Akhtar M, Viazis S, Diez-Gonzalez F (2014). Isolation, identification and characterization of lytic, wide host range bacteriophages from waste effluents against Salmonella enterica serovars. Food Control, 38, 67–74.
  • Ang-Kucuker M, Tolun V, Helmuth Ret al. (2000). Phage types, antibiotic susceptibilities and plasmid profiles of Salmonella typhimurium and Salmonella enteritidis strains isolated in Istanbul, Turkey. Clin Microbiol Infect, 6 (11), 593–599.
  • Ao TT, Feasey NA, Gordon MA et al. (2015). Global Burden of Invasive Nontyphoidal Salmonella Disease. Emerg Infect Dis, 21 (6), 941–949.
  • Ata Z (2018). Türkiye’de Sık Rastlanan Salmonella Enteritidis Serovarlarına Spesifik Bakteriyofajların İzolasyonu. Etlik Vet. Mikrobiyoloji Derg, 29 (2), 136–142.
  • Atterbury RJ, Van Bergen MAP, Ortiz F, et al. (2007). Bacteriophage Therapy to Reduce Salmonella Colonization of Broiler Chickens. Appl Environ Microbiol, 73, 4543–4549.
  • Banin E, Hughes D, Kuipers OP (2017). Editorial: Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiol. Rev, 41 (3), 450–452.
  • Bourdin G, Navarro A, Sarker SA, et al. (2014). Coverage of diarrhoea-associated Escherichia coli isolates from different origins with two types of phage cocktails. Microb Biotechnol, 7 (2), 165–176.
  • CDC (2019). Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention (U.S.).
  • D’Andrea MM, Frezza D, Romano E et al. (2020). The lytic bacteriophage vB_EfaH_EF1TV, a new member of the Herelleviridae family, disrupts biofilm produced by Enterococcus faecalis clinical strains. J Glob Antimicrob Resist, 21, 68–75.
  • Duc HM, Son HM, Yi HPS et al. (2020). Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157:H7 in different food matrices. Food Res Int, 131, 108977.
  • Dueñas F, Rivera D, Toledo V et al. (2017). Short communication: Characterization of Salmonella phages from dairy calves on farms with a history of diarrhea. J Dairy Sci, 100 (3), 2196–2200.
  • EFSA (2021). The European Union One Health 2019 Zoonoses Report. EFSA J, 19, e06406.
  • Garrido-Maestu A, Fuciños P, Azinheiro S et al. (2019). Specific detection of viable Salmonella Enteritidis by phage amplification combined with qPCR (PAA-qPCR) in spiked chicken meat samples. Food Control, 99, 79–83.
  • Guglielmotti D, Mercanti D, Reinheimer J, Quiberoni ADL (2012). Review: Efficiency of Physical and Chemical Treatments on the Inactivation of Dairy Bacteriophages. Front Microbiol, 2, 282.
  • Hede K (2014). Antibiotic resistance: An infectious arms race. Nature, 509 (7498), S2–S3.
  • Higgins JP, Higgins SE, Guenther KL et al. (2005). Use of a specific bacteriophage treatment to reduce Salmonella in poultry products. Poult Sci, 84 (7), 1141–1145.
  • Holmfeldt K, Middelboe M, Nybroe O, Riemann L (2007). Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl Environ Microbiol, 73 (21), 6730–6739.
  • Jeon G, Ahn J (2021). Evaluation of phage adsorption to Salmonella Typhimurium exposed to different levels of pH and antibiotic. Microb Pathog, 150, 104726.
  • Kutateladze M, Adamia R (2010). Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol, 28 (12), 591–595.
  • LeLièvre V, Besnard A, Schlusselhuber M, Desmasures N, Dalmasso M (2019). Phages for biocontrol in foods: What opportunities for Salmonella sp. control along the dairy food chain? Food Microbiol, 78, 89–98.
  • Li Z, Wang Xiao Teng D, Mao R et al. (2018). Improved antibacterial activity of a marine peptide-N2 against intracellular Salmonella typhimurium by conjugating with cell-penetrating peptides-bLFcin6/Tat11. Eur J Med Chem, 145, 263–272.
  • Litt PK, Jaroni D (2017). Isolation and Physiomorphological Characterization of Escherichia coli O157:H7-Infecting Bacteriophages Recovered from Beef Cattle Operations. Int. J Microbiol, 2017, 1–12.
  • Lu M, Liu B, Xiong W, Liu X (2022). The Combination of Salmonella Phage ST-3 and Antibiotics to Prevent Salmonella Typhimurium In Vitro. Curr Microbiol, 79 (12), 371.
  • McFarland J (1907). Nephelometer: An Instrument For Estimating The Number Of Bacteria In Suspensions Used For Calculating The Opsonic Index And For Vaccines. J Am Med Assoc, 14, 1176-1178.
  • McLaughlin MR, Balaa MF, Sims J, King R (2006). Isolation of Salmonella Bacteriophages from Swine Effluent Lagoons. J Environ Qual, 35 (2), 522–528.
  • Naylor SW, Roe AJ, Nart P et al. (2005). Escherichia coli O157: H7 forms attaching and effacing lesions at the terminal rectum of cattle and colonization requires the LEE4 operon. Microbiol Read Engl, 151 (8), 2773–2781.
  • Olsen NS, Lametsch R, Wagner N, Hansen LH, Kot W (2022). Salmonella phage akira, infecting selected Salmonella enterica Enteritidis and Typhimurium strains, represents a new lineage of bacteriophages. Arch Virol, 167 (10), 2049–2056.
  • Petsong K, Benjakul S, Chaturongakul S, Switt AIM, Vongkamjan K (2019). Lysis Profiles of Salmonella Phages on Salmonella Isolates from Various Sources and Efficiency of a Phage Cocktail against S. Enteritidis and S. Typhimurium. Microorganisms, 7 (4), 100.
  • Rakhuba DV, Kolomiets EI, Dey ES, Novik GI (2010). Bacteriophage Receptors, Mechanisms of Phage Adsorption and Penetration into Host Cell Pol, J Microbiol, 59 (3), 145–155.
  • Ritter AC, Tondo EC, Siqueira FM et al. (2019). Genome analysis reveals insights into high-resistance and virulence of Salmonella Enteritidis involved in foodborne outbreaks. Int J Food Microbiol, 306, 108269.
  • Sahi̇n TS, Urganci N, Yildirim Z (2020). Lytıc Bacterıophages Effectıve Agaınst Escherichia coli O157:H7, A Foodborne Pathogen, 45 (4), 635–645.
  • Sambrook J, Fritsch EF, Maniatis T (1989). Molecular cloning: a laboratory manual. Mol Cloning Lab Man 4th. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 2012, 1209-1330.
  • Schoeni JL, Doyle MP (1994). Variable colonization of chickens perorally inoculated with Escherichia coli O157:H7 and subsequent contamination of eggs. Appl Environ Microbiol, 60 (8), 2958–2962.
  • Switt AIM, den Bakker HC, Vongkamjan K et al. (2013). Salmonella bacteriophage diversity reflects host diversity on dairy farms. Food Microbiol, 36 (2), 275–285.
  • Thung TY, Lee E, Mahyudin NA et al. (2019). Evaluation of a lytic bacteriophage for bio-control of Salmonella Typhimurium in different food matrices. LWT, 105, 211–214.
  • Viazis S, Akhtar M, Feirtag J, Brabban AD, Diez-Gonzalez F (2011). Isolation and characterization of lytic bacteriophages against enterohaemorrhagic Escherichia coli: Isolation and characterization of EHEC-phages. J Appl Microbiol, 110 (5), 1323–1331.
  • Wang X, Sun J, Zhao J, Zhou Z, Zhang Q, Wong C, Yao Y (2019). All-Solid-State Fiber-Shaped Asymmetric Supercapacitors with Ultrahigh Energy Density Based on Porous Vanadium Nitride Nanowires and Ultrathin Ni(OH) 2 Nanosheet Wrapped NiCo 2 O 4 Nanowires Arrays Electrode. J Phys Chem C, 123 (2), 985–993.
  • Wasteson Y (2001). Zoonotic Escherichia coli. Acta Vet. Scand Suppl, 95, 79–84.
  • Wolput S, Makumi A, Wicke L et al. (2022). Transcriptional Organization of the Salmonella Typhimurium Phage P22 pid ORFan Locus. Int J Mol Sci, 23 (3), 1253.
  • Yildirim Z, Sakіn T, Çoban F (2018) (a). Isolation of lytic bacteriophages infecting Salmonella Typhimurium and Salmonella Enteritidis. Acta Biol Hung, 69 (3), 350–369.
  • Yildirim Z, Sakin T, Çoban F (2018) (b). Isolation of Anti-Escherichia coli O157:H7 Bacteriophages and Determination of Their Host Ranges. Turk J Agric Food Sci Technol, 6 (9), 1200–1208.
  • Yim L, Betancor L, Martínez A, Bryant C, Maskell D, Chabalgoity JA (2011). Naturally occurring motility-defective mutants of Salmonella enterica serovar Enteritidis isolated preferentially from nonhuman rather than human sources. Appl Environ Microbiol, 77 (21), 7740–7748.
  • Zhu W, Ding Y, Huang C, Wang Ji Wang Jia Wang X (2022). Genomic characterization of a novel bacteriophage STP55 revealed its prominent capacity in disrupting the dual-species biofilm formed by Salmonella Typhimurium and Escherichia coli O157:H7 strains. Arch Microbiol, 204 (10), 597.
There are 43 citations in total.

Details

Primary Language English
Subjects Veterinary Microbiology
Journal Section Araştırma Makaleleri
Authors

Gökçenur Sanioğlu Gölen 0000-0001-9950-330X

Kadir Akar 0000-0003-0894-7357

Early Pub Date November 27, 2023
Publication Date November 27, 2023
Submission Date June 16, 2023
Acceptance Date September 28, 2023
Published in Issue Year 2023 Volume: 34 Issue: 3

Cite

APA Sanioğlu Gölen, G., & Akar, K. (2023). Investigation of Escherichia coli O157:H7 and Salmonella Bacteriophages in Cattle Fecal Sources. Van Veterinary Journal, 34(3), 251-255. https://doi.org/10.36483/vanvetj.1315469
AMA Sanioğlu Gölen G, Akar K. Investigation of Escherichia coli O157:H7 and Salmonella Bacteriophages in Cattle Fecal Sources. Van Vet J. November 2023;34(3):251-255. doi:10.36483/vanvetj.1315469
Chicago Sanioğlu Gölen, Gökçenur, and Kadir Akar. “Investigation of Escherichia Coli O157:H7 and Salmonella Bacteriophages in Cattle Fecal Sources”. Van Veterinary Journal 34, no. 3 (November 2023): 251-55. https://doi.org/10.36483/vanvetj.1315469.
EndNote Sanioğlu Gölen G, Akar K (November 1, 2023) Investigation of Escherichia coli O157:H7 and Salmonella Bacteriophages in Cattle Fecal Sources. Van Veterinary Journal 34 3 251–255.
IEEE G. Sanioğlu Gölen and K. Akar, “Investigation of Escherichia coli O157:H7 and Salmonella Bacteriophages in Cattle Fecal Sources”, Van Vet J, vol. 34, no. 3, pp. 251–255, 2023, doi: 10.36483/vanvetj.1315469.
ISNAD Sanioğlu Gölen, Gökçenur - Akar, Kadir. “Investigation of Escherichia Coli O157:H7 and Salmonella Bacteriophages in Cattle Fecal Sources”. Van Veterinary Journal 34/3 (November 2023), 251-255. https://doi.org/10.36483/vanvetj.1315469.
JAMA Sanioğlu Gölen G, Akar K. Investigation of Escherichia coli O157:H7 and Salmonella Bacteriophages in Cattle Fecal Sources. Van Vet J. 2023;34:251–255.
MLA Sanioğlu Gölen, Gökçenur and Kadir Akar. “Investigation of Escherichia Coli O157:H7 and Salmonella Bacteriophages in Cattle Fecal Sources”. Van Veterinary Journal, vol. 34, no. 3, 2023, pp. 251-5, doi:10.36483/vanvetj.1315469.
Vancouver Sanioğlu Gölen G, Akar K. Investigation of Escherichia coli O157:H7 and Salmonella Bacteriophages in Cattle Fecal Sources. Van Vet J. 2023;34(3):251-5.

88x31.png

Accepted papers are licensed under Creative Commons Attribution-NonCommercial 4.0 International License