Research Article
BibTex RIS Cite

Tıbbi Bitki Mespilus Germanica Meyve Ekstraktının Kemoterapötik Potansiyelinin Değerlendirilmesi: Hücre Ölüm Yolakları ve DNA Hasar Mekanizması

Year 2024, Volume: 35 Issue: 3, 202 - 207, 28.11.2024
https://doi.org/10.36483/vanvetj.1556349

Abstract

Bitki ekstarktları antikanser dahil olmak üzere çeşitli biyolojik aktiviteler içeren doğal kompleks bileşiklerin bir karışımıdır. Sentetik ilaçlara göre daha az yan etkiye sahip olmaları, bitki ekstraktlarını kanser tedavisinde önemli bir strateji haline getirmiştir. Bu çalışmanın amacı, Mespilus germanica (Muşmula) meyve ekstraktın kemoterapötik potansiyelinin araştırılmasıdır. Elde edilen ekstraktın bileşik içeriği HPLC ile tespit edildi. MTT canlılık testi yoluyla proliferatif konsantrasyon (PRO) ve hücrelerin yarısının çoğalmasını inhibe eden konsantrasyon (IC50) belirlendi. PRO ve IC50 konsantrasyonlar 48 saat boyunca A549 akciğer kanser hücresine uygulandı. Çalışma grupları kontrol, PRO ve IC50 olmak üzere 3 grup olarak belirlendi. Elde edilen hücrelerden Trizol reagent-kloroform yöntemi kullanılarak toplam mRNA elde edildi. Toplam mRNA'dan cDNA sentezi yapıldı. Programlanmış hücre ölümü belirteçlerinin mRNA gen ekspresyon seviyeleri RT-qPCR ile tespit edildi. Tüm grup çalışmaları için p<0.05 istatistiksel olarak anlamlı kabul edildi. Ekstrakt içeriği analizinde klorojenik asit, elajik asit, kuersetin ve gallik asit polifenolik birleşikler tespit edildi. MTT sonucu IC50 540 μg/ml ve PRO 100 μg/ml olarak tespit edildi. IC50 konsantrasyonunun, ATG5 (otofajik) ve RIPK1 (nekrotik) genlerin ekspresyonunu önemli ölçüde arttırdığı (p<0.05) ortaya konuldu. Ayrıca Kaspaz-8, BAX, Apaf-1, Kaspaz-9, Kaspaz-3 ve Kaspaz-7 proteazlarının yanı sıra, genotoksik hasarla ilişkili genler olan PARP-1 ve P53'ün ekspresyonunun da önemli ölçüde arttığı gözlendi (p<0.05). Sonuç olarak Mespilus germenica A549 kanser hücrelerinin ortadan kaldırılması için istenilen programlanmış hücre ölüm yollaklarını tetiklediği tespit edildi. Mespilus germenica meyvesinin yeterli oranda tüketilmesinin kanser hücre çoğalmasını azaltabileceğini veya tamamen ortadan kaldırabileceği kanaatine varıldı. Elde edilen bu sonuçların kesin olarak ortaya konması için in vivo fazlı deneysel bir uygulamanın yapılması gerekeceği düşünülmektedir.

References

  • Almatroodi SA, Alsahli MA, Almatroudi A et al. (2021). Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways. Molecules, 26 (5), 1315.
  • Ayaz FA, Glew RH, Huang HS, Chuang LT et al. (2002). Evolution of fatty acids in medlar (Mespilus germanica L.) mesocarp at different stages of ripening. Grasas y Aceites, 53 (3), 352–356.
  • Baytop T (1999). Therapy with medicinal plants in Türkiye (past and present) (pp. 118-119). 2nd Edition. Nobel Medicine Publication, İstanbul.
  • Calaf GM, Ponce-Cusi R, Carrión F (2018). Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncol Rep, 40 (4), 2381-2388.
  • Chomczynski P, Mackey K (1995). Short technical reports modification of the TRI reagent procedure for isolation of RNA from polysaccharide-and proteoglycan-rich sources. Biotechniques, 19 (6), 942-945.
  • Dai J, Mumper RJ (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15 (10), 7313-7352.
  • Dalar A, Konczak I (2013). Phenolic contents, antioxidant capacities and inhibitory activities against key metabolic syndrome relevant enzymes of herbal teas from Eastern Anatolia. Ind Crops Prod, 44, 383-390.
  • Dalar A, Türker M, Konczak I (2012). Antioxidant capacity and phenolic constituents of Malva neglecta Wallr. and Plantago lanceolata L. from Eastern Anatolia Region of Turkey. J Herb Med, 2 (2), 42-51.
  • Dar RA, Shahnawaz M, Qazi PH (2017). General overview of medicinal plants: A review. J Phytopharmacol, 6, 349-351.
  • Duan R, Du W, Guo W (2020). EZH2: a novel target for cancer treatment. J Hematol Oncol, 28,13 (1), 104.
  • Ercisli S, Akbulut M, Ozdemir O, Sengul M, Orhan E (2008). Phenolic and antioxidant diversity among persimmon (Diospyrus kaki L.) genotypes in Türkiye. Int J Food Sci Nutr, 59 (6), 477-482.
  • Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK (2019). Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants (Basel), 8 (2), 35.
  • Glew R. H, Ayaz, FA, Sanz C et al. (2003). Changes in sugars, organic acids and amino acids in medlar (Mespilus germanica L.) during fruit development and maturation. Food Chem, 83 (3), 363-369.
  • Guo H, Ding H, Tang X et al. (2021). Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac Cancer, 12 (9), 1415-1422.
  • Gupta A, Atanasov AG, Li Y, Kumar N, Bishayee A (2022). Chlorogenic acid for cancer prevention and therapy: Current status on efficacy and mechanisms of action. Pharmacol Res, 186, 106505.
  • Hayakawa S, Ohishi T, Oishi Y et al. (2022). Contribution of Non-Coding RNAs to Anticancer Effects of Dietary Polyphenols: Chlorogenic Acid, Curcumin, Epigallocatechin-3-Gallate, Genistein, Quercetin and Resveratrol. Antioxidants (Basel, Switzerland), 11 (12), 2352.
  • Hong SJ, Dawson TM, Dawson VL (2013). PARP and the release of apoptosis-inducing factor from mitochondria: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience, Bookshelf ID: NBK6179.
  • Liu Q, Liang X, Niu C, Wang X (2018). Ellagic acid romotes A549 cell apoptosis via regulating the phosphoinositide 3-kinase/protein kinase B pathway. Exp Ther Med, 16 (1), 347-352.
  • Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25 (4), 402–408.
  • Ng CX, Affendi MM, Chong PP, Lee SH (2022). The potential of plant-derived extracts and compounds to augment anticancer effects of chemotherapeutic drugs. Nutr Cancer, 74 (9), 3058-3076.
  • Oruganti L, Meriga B (2021). Plant polyphenolic compounds potentiates therapeutic efficiency of anticancer chemotherapeutic drugs: A Review. Endocr Metab Immune Disord Drug Targets, 21 (2), 246-252.
  • Rawat D, Shrivastava S, Naik RA et al. (2018). An overview of natural plant products in the treatment of hepatocellular carcinoma. Anticancer Agents Med Chem, 18 (13), 1838-1859.
  • Rop O, Sochor J, Jurikova T et al. (2011). Effect of five different stages of ripening on chemical compounds in medlar (Mespilus germanica L.). Molecules, 16 (1), 74-91.
  • Sadeghinejad Z, Erfani-Moghadam J, Khadivi A (2022). Bioactive content and phenolic compounds of common medlar (Mespilus germanica L.) and Stern's medlar (M. canescens Phipps). Food Sci Nutr, 10 (6), 1988-1993.
  • Sangweni NF, Dludla PV, Chellan N et al. (2021). The implication of low dose dimethyl sulfoxide on mitochondrial function and oxidative damage in cultured cardiac and cancer cells. Molecules, 26 (23), 7305.
  • Shulaev V, Korban SS, Sosinski B et al. (2008). Multiple models for Rosaceae genomics. Plant Physiology, 147 (3), 985-1003.
  • Top RY., Erden S, Tekin B (2019). The investigation of antioxidant and anticancer effects of some importance medical plants. BEU Journal of Science, 8(2), 435-442.
  • Wang L, Du H, Chen P (2020). Chlorogenic acid inhibits the proliferation of human lung cancer A549 cell lines by targeting annexin A2 in vitro and in vivo. Biomed Pharmacother, 131, 110673.
  • Yunusa UM, Ozturk Urek R (2024). Phenolic composition, antioxidant, and cytotoxic effects on HeLa and HepG2 cancer cell lines of Mespilus germanica grown in Turkey. Nat Prod Res, 38(11), 1972-1976.

Evaluation of the Chemotherapeutic Potential of Medicinal Plant Mespilus germanica Fruit Extract: Cell Death Pathways and DNA Damage Mechanism

Year 2024, Volume: 35 Issue: 3, 202 - 207, 28.11.2024
https://doi.org/10.36483/vanvetj.1556349

Abstract

Plant extracts are a mixture of natural complex compounds containing various biological activities, including anticancer properties. The fact that they have fewer side effects than synthetic drugs has made plant extracts an important strategy in cancer treatment The purpose of this study was to explore the chemotherapeutic potential of Mespilus germanica (medlar) fruit extract. The compound content of the extract was determined by HPLC. The proliferative concentration (PRO) and the concentration inhibiting the proliferation of half of the cells (IC50) were determined by the MTT viability test. PRO and IC50 concentrations were treated to A549 lung cancer cells for 48 hours. The study groups were determined as 3 groups: control, PRO, and IC50. Total mRNA was obtained from the cells by using the Trizol Reagent-chloroform method. cDNA synthesis was performed from total mRNA. mRNA gene expression levels of programmed cell death markers were detected by RT-qPCR. For all group studies, p<0.05 was considered statistically significant. It was detected in the extract content analysis, chlorogenic acid, ellagic acid, quercetin, and gallic acid polyphenolic compounds. As a result of MTT, IC50 was detected at 540 μg/ml, and PRO was 100 μg/ml. It was revealed that IC50 concentration significantly increased (p<0.05) the expression of ATG5 (autophagic) and RIPK1 (necrotic) genes. In addition, it was observed that the expression of proteases Caspase-8, BAX, Apaf-1, Caspase-9, Caspase-3, and Caspase-7, as well as genes associated with genotoxic damage, PARP-1 and P53, increased significantly (p<0.05). As a result, it was determined that Mespilus germanica triggered the programmed cell death pathways in the A549 cancer cell line. It was concluded that adequate consumption of Mespilus germanica fruit can reduce or inhibit cancer cell proliferation. An experimental administration with an in vivo phase should be administered to reveal these results definitively.

Ethical Statement

Bu çalışma ticari olarak satın alınan hücre serisi üzerinde gerçekleştirildi. Etik onay gerektirmeyen belge sisteme yüklenmiştir.

References

  • Almatroodi SA, Alsahli MA, Almatroudi A et al. (2021). Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways. Molecules, 26 (5), 1315.
  • Ayaz FA, Glew RH, Huang HS, Chuang LT et al. (2002). Evolution of fatty acids in medlar (Mespilus germanica L.) mesocarp at different stages of ripening. Grasas y Aceites, 53 (3), 352–356.
  • Baytop T (1999). Therapy with medicinal plants in Türkiye (past and present) (pp. 118-119). 2nd Edition. Nobel Medicine Publication, İstanbul.
  • Calaf GM, Ponce-Cusi R, Carrión F (2018). Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncol Rep, 40 (4), 2381-2388.
  • Chomczynski P, Mackey K (1995). Short technical reports modification of the TRI reagent procedure for isolation of RNA from polysaccharide-and proteoglycan-rich sources. Biotechniques, 19 (6), 942-945.
  • Dai J, Mumper RJ (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15 (10), 7313-7352.
  • Dalar A, Konczak I (2013). Phenolic contents, antioxidant capacities and inhibitory activities against key metabolic syndrome relevant enzymes of herbal teas from Eastern Anatolia. Ind Crops Prod, 44, 383-390.
  • Dalar A, Türker M, Konczak I (2012). Antioxidant capacity and phenolic constituents of Malva neglecta Wallr. and Plantago lanceolata L. from Eastern Anatolia Region of Turkey. J Herb Med, 2 (2), 42-51.
  • Dar RA, Shahnawaz M, Qazi PH (2017). General overview of medicinal plants: A review. J Phytopharmacol, 6, 349-351.
  • Duan R, Du W, Guo W (2020). EZH2: a novel target for cancer treatment. J Hematol Oncol, 28,13 (1), 104.
  • Ercisli S, Akbulut M, Ozdemir O, Sengul M, Orhan E (2008). Phenolic and antioxidant diversity among persimmon (Diospyrus kaki L.) genotypes in Türkiye. Int J Food Sci Nutr, 59 (6), 477-482.
  • Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK (2019). Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants (Basel), 8 (2), 35.
  • Glew R. H, Ayaz, FA, Sanz C et al. (2003). Changes in sugars, organic acids and amino acids in medlar (Mespilus germanica L.) during fruit development and maturation. Food Chem, 83 (3), 363-369.
  • Guo H, Ding H, Tang X et al. (2021). Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac Cancer, 12 (9), 1415-1422.
  • Gupta A, Atanasov AG, Li Y, Kumar N, Bishayee A (2022). Chlorogenic acid for cancer prevention and therapy: Current status on efficacy and mechanisms of action. Pharmacol Res, 186, 106505.
  • Hayakawa S, Ohishi T, Oishi Y et al. (2022). Contribution of Non-Coding RNAs to Anticancer Effects of Dietary Polyphenols: Chlorogenic Acid, Curcumin, Epigallocatechin-3-Gallate, Genistein, Quercetin and Resveratrol. Antioxidants (Basel, Switzerland), 11 (12), 2352.
  • Hong SJ, Dawson TM, Dawson VL (2013). PARP and the release of apoptosis-inducing factor from mitochondria: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience, Bookshelf ID: NBK6179.
  • Liu Q, Liang X, Niu C, Wang X (2018). Ellagic acid romotes A549 cell apoptosis via regulating the phosphoinositide 3-kinase/protein kinase B pathway. Exp Ther Med, 16 (1), 347-352.
  • Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25 (4), 402–408.
  • Ng CX, Affendi MM, Chong PP, Lee SH (2022). The potential of plant-derived extracts and compounds to augment anticancer effects of chemotherapeutic drugs. Nutr Cancer, 74 (9), 3058-3076.
  • Oruganti L, Meriga B (2021). Plant polyphenolic compounds potentiates therapeutic efficiency of anticancer chemotherapeutic drugs: A Review. Endocr Metab Immune Disord Drug Targets, 21 (2), 246-252.
  • Rawat D, Shrivastava S, Naik RA et al. (2018). An overview of natural plant products in the treatment of hepatocellular carcinoma. Anticancer Agents Med Chem, 18 (13), 1838-1859.
  • Rop O, Sochor J, Jurikova T et al. (2011). Effect of five different stages of ripening on chemical compounds in medlar (Mespilus germanica L.). Molecules, 16 (1), 74-91.
  • Sadeghinejad Z, Erfani-Moghadam J, Khadivi A (2022). Bioactive content and phenolic compounds of common medlar (Mespilus germanica L.) and Stern's medlar (M. canescens Phipps). Food Sci Nutr, 10 (6), 1988-1993.
  • Sangweni NF, Dludla PV, Chellan N et al. (2021). The implication of low dose dimethyl sulfoxide on mitochondrial function and oxidative damage in cultured cardiac and cancer cells. Molecules, 26 (23), 7305.
  • Shulaev V, Korban SS, Sosinski B et al. (2008). Multiple models for Rosaceae genomics. Plant Physiology, 147 (3), 985-1003.
  • Top RY., Erden S, Tekin B (2019). The investigation of antioxidant and anticancer effects of some importance medical plants. BEU Journal of Science, 8(2), 435-442.
  • Wang L, Du H, Chen P (2020). Chlorogenic acid inhibits the proliferation of human lung cancer A549 cell lines by targeting annexin A2 in vitro and in vivo. Biomed Pharmacother, 131, 110673.
  • Yunusa UM, Ozturk Urek R (2024). Phenolic composition, antioxidant, and cytotoxic effects on HeLa and HepG2 cancer cell lines of Mespilus germanica grown in Turkey. Nat Prod Res, 38(11), 1972-1976.
There are 29 citations in total.

Details

Primary Language English
Subjects Veterinary Biochemistry
Journal Section Araştırma Makaleleri
Authors

Veysel Yüksek 0000-0001-7432-4989

Gül Görmez 0000-0001-6980-4988

Early Pub Date November 28, 2024
Publication Date November 28, 2024
Submission Date September 26, 2024
Acceptance Date November 20, 2024
Published in Issue Year 2024 Volume: 35 Issue: 3

Cite

APA Yüksek, V., & Görmez, G. (2024). Evaluation of the Chemotherapeutic Potential of Medicinal Plant Mespilus germanica Fruit Extract: Cell Death Pathways and DNA Damage Mechanism. Van Veterinary Journal, 35(3), 202-207. https://doi.org/10.36483/vanvetj.1556349
AMA Yüksek V, Görmez G. Evaluation of the Chemotherapeutic Potential of Medicinal Plant Mespilus germanica Fruit Extract: Cell Death Pathways and DNA Damage Mechanism. Van Vet J. November 2024;35(3):202-207. doi:10.36483/vanvetj.1556349
Chicago Yüksek, Veysel, and Gül Görmez. “Evaluation of the Chemotherapeutic Potential of Medicinal Plant Mespilus Germanica Fruit Extract: Cell Death Pathways and DNA Damage Mechanism”. Van Veterinary Journal 35, no. 3 (November 2024): 202-7. https://doi.org/10.36483/vanvetj.1556349.
EndNote Yüksek V, Görmez G (November 1, 2024) Evaluation of the Chemotherapeutic Potential of Medicinal Plant Mespilus germanica Fruit Extract: Cell Death Pathways and DNA Damage Mechanism. Van Veterinary Journal 35 3 202–207.
IEEE V. Yüksek and G. Görmez, “Evaluation of the Chemotherapeutic Potential of Medicinal Plant Mespilus germanica Fruit Extract: Cell Death Pathways and DNA Damage Mechanism”, Van Vet J, vol. 35, no. 3, pp. 202–207, 2024, doi: 10.36483/vanvetj.1556349.
ISNAD Yüksek, Veysel - Görmez, Gül. “Evaluation of the Chemotherapeutic Potential of Medicinal Plant Mespilus Germanica Fruit Extract: Cell Death Pathways and DNA Damage Mechanism”. Van Veterinary Journal 35/3 (November 2024), 202-207. https://doi.org/10.36483/vanvetj.1556349.
JAMA Yüksek V, Görmez G. Evaluation of the Chemotherapeutic Potential of Medicinal Plant Mespilus germanica Fruit Extract: Cell Death Pathways and DNA Damage Mechanism. Van Vet J. 2024;35:202–207.
MLA Yüksek, Veysel and Gül Görmez. “Evaluation of the Chemotherapeutic Potential of Medicinal Plant Mespilus Germanica Fruit Extract: Cell Death Pathways and DNA Damage Mechanism”. Van Veterinary Journal, vol. 35, no. 3, 2024, pp. 202-7, doi:10.36483/vanvetj.1556349.
Vancouver Yüksek V, Görmez G. Evaluation of the Chemotherapeutic Potential of Medicinal Plant Mespilus germanica Fruit Extract: Cell Death Pathways and DNA Damage Mechanism. Van Vet J. 2024;35(3):202-7.

88x31.png

Accepted papers are licensed under Creative Commons Attribution-NonCommercial 4.0 International License