Research Article
BibTex RIS Cite

Olağandışı Olaylar Hakkındaki Tweet’lerin Gerçek ve Gerçek Dışı Olarak Google BERT Modeli ile Sınıflandırılması

Year 2021, Volume: 4 Issue: 1, 31 - 37, 15.01.2021

Abstract

İnsanlar yanlarında taşıyabildikleri internet erişimi olan cihazlar ile gözlemledikleri her tür olağan ya da olağandışı durumu gerçek zamanlı olarak sosyal ağlarda paylaşabilmektedir. Twitter, bu konuda yaygın olarak kullanılan ve pek çok olağandışı durumun ilk duyulduğu sosyal ağlardandır. Bu anlamda acil müdahale ekipleri ve medya şirketleri için popüler bir haber kaynağıdır. Ancak yapılan paylaşımların her zaman gerçek bir olağan dışı durumu belirttiği açık değildir. Doğal dil işleme, insanların konuştukları dillerin makineler tarafından yorumlanabilmesine olanak tanır. Google BERT modeli, iki yönlü olarak kelimeler ve cümleler arasındaki bağlamsal ilişkileri yapay sinir ağları temelinde etkin bir şekilde ortaya koyan bir doğal dil işleme modeldir. Gerçekleştirilen çalışmada deprem, kaza, olumsuz hava olayları gibi felaket durumları hakkında atılan 7613 adet gerçek veya gerçek dışı olarak etiketlenmiş tweet içeren veri seti Bert modeli kullanılarak sınıflanmıştır. Gerçekleştirilen eğitim süreci sonunda %98.8 doğruluk elde edilmiştir.

References

  • “Digital 2020: Global Digital Overview,” DataReportal – Global Digital Insights. https://datareportal.com/reports/digital-2020-global-digital-overview (accessed May 10, 2020).
  • “Twitter by the Numbers (2020): Stats, Demographics & Fun Facts,” Jan. 05, 2020. https://www.omnicoreagency.com/twitter-statistics/ (accessed May 13, 2020).
  • A. Bruns, T. Highfield, and J. Burgess, “The Arab Spring and social media audiences: English and Arabic Twitter users and their networks,” American behavioral scientist, vol. 57, no. 7, pp. 871–898, 2013.
  • T. Terpstra, A. De Vries, R. Stronkman, and G. L. Paradies, Towards a realtime Twitter analysis during crises for operational crisis management. Simon Fraser University Burnaby, 2012.
  • F. Cheong and C. Cheong, “Social media data mining: A social network analysis of tweets during the Australian 2010-2011 floods,” in 15th Pacific Asia Conference on Information Systems (PACIS), 2011, pp. 1–16.
  • B. Mandel, A. Culotta, J. Boulahanis, D. Stark, B. Lewis, and J. Rodrigue, “A demographic analysis of online sentiment during hurricane irene,” in Proceedings of the second workshop on language in social media, 2012, pp. 27–36.
  • C. Caragea, A. Squicciarini, S. Stehle, K. Neppalli, and A. Tapia, “Mapping moods: Geo-mapped sentiment analysis during hurricane sandy,” pp. 642–651, Jan. 2014.
  • H. Li et al., “Twitter mining for disaster response: A domain adaptation approach,” Jan. 2015.
  • M. Imran, S. Elbassuoni, C. Castillo, F. Diaz, and P. Meier, Extracting Information Nuggets from Disaster- Related Messages in Social Media. 2013.
  • Z. Ashktorab, C. Brown, M. Nandi, and A. Culotta, “Tweedr: Mining twitter to inform disaster response.,” in ISCRAM, 2014.
  • K. Kireyev, L. Palen, and K. Anderson, “Applications of topics models to analysis of disaster-related twitter data,” in NIPS workshop on applications for topic models: text and beyond, 2009, vol. 1.
  • S. Vieweg, A. L. Hughes, K. Starbird, and L. Palen, “Microblogging during two natural hazards events: what twitter may contribute to situational awareness,” in Proceedings of the SIGCHI conference on human factors in computing systems, 2010, pp. 1079–1088.
  • S. Kumar, G. Barbier, M. A. Abbasi, and H. Liu, “Tweettracker: An analysis tool for humanitarian and disaster relief,” in Fifth international AAAI conference on weblogs and social media, 2011.
  • G. G. Chowdhury, “Natural language processing,” Annual review of information science and technology, vol. 37, no. 1, pp. 51–89, 2003.
  • J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
  • K. Schachinger, “A Complete Guide to the Google RankBrain Algorithm,” Search Engine Journal, 2017.
Year 2021, Volume: 4 Issue: 1, 31 - 37, 15.01.2021

Abstract

References

  • “Digital 2020: Global Digital Overview,” DataReportal – Global Digital Insights. https://datareportal.com/reports/digital-2020-global-digital-overview (accessed May 10, 2020).
  • “Twitter by the Numbers (2020): Stats, Demographics & Fun Facts,” Jan. 05, 2020. https://www.omnicoreagency.com/twitter-statistics/ (accessed May 13, 2020).
  • A. Bruns, T. Highfield, and J. Burgess, “The Arab Spring and social media audiences: English and Arabic Twitter users and their networks,” American behavioral scientist, vol. 57, no. 7, pp. 871–898, 2013.
  • T. Terpstra, A. De Vries, R. Stronkman, and G. L. Paradies, Towards a realtime Twitter analysis during crises for operational crisis management. Simon Fraser University Burnaby, 2012.
  • F. Cheong and C. Cheong, “Social media data mining: A social network analysis of tweets during the Australian 2010-2011 floods,” in 15th Pacific Asia Conference on Information Systems (PACIS), 2011, pp. 1–16.
  • B. Mandel, A. Culotta, J. Boulahanis, D. Stark, B. Lewis, and J. Rodrigue, “A demographic analysis of online sentiment during hurricane irene,” in Proceedings of the second workshop on language in social media, 2012, pp. 27–36.
  • C. Caragea, A. Squicciarini, S. Stehle, K. Neppalli, and A. Tapia, “Mapping moods: Geo-mapped sentiment analysis during hurricane sandy,” pp. 642–651, Jan. 2014.
  • H. Li et al., “Twitter mining for disaster response: A domain adaptation approach,” Jan. 2015.
  • M. Imran, S. Elbassuoni, C. Castillo, F. Diaz, and P. Meier, Extracting Information Nuggets from Disaster- Related Messages in Social Media. 2013.
  • Z. Ashktorab, C. Brown, M. Nandi, and A. Culotta, “Tweedr: Mining twitter to inform disaster response.,” in ISCRAM, 2014.
  • K. Kireyev, L. Palen, and K. Anderson, “Applications of topics models to analysis of disaster-related twitter data,” in NIPS workshop on applications for topic models: text and beyond, 2009, vol. 1.
  • S. Vieweg, A. L. Hughes, K. Starbird, and L. Palen, “Microblogging during two natural hazards events: what twitter may contribute to situational awareness,” in Proceedings of the SIGCHI conference on human factors in computing systems, 2010, pp. 1079–1088.
  • S. Kumar, G. Barbier, M. A. Abbasi, and H. Liu, “Tweettracker: An analysis tool for humanitarian and disaster relief,” in Fifth international AAAI conference on weblogs and social media, 2011.
  • G. G. Chowdhury, “Natural language processing,” Annual review of information science and technology, vol. 37, no. 1, pp. 51–89, 2003.
  • J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
  • K. Schachinger, “A Complete Guide to the Google RankBrain Algorithm,” Search Engine Journal, 2017.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Onur Sevli 0000-0002-8933-8395

Nazan Kemaloğlu

Publication Date January 15, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Sevli, O., & Kemaloğlu, N. (2021). Olağandışı Olaylar Hakkındaki Tweet’lerin Gerçek ve Gerçek Dışı Olarak Google BERT Modeli ile Sınıflandırılması. Veri Bilimi, 4(1), 31-37.



Dergimizin Tarandığı Dizinler (İndeksler)


Academic Resource Index

logo.png

journalseeker.researchbib.com

Google Scholar

scholar_logo_64dp.png

ASOS Index

asos-index.png

Rooting Index

logo.png

www.rootindexing.com

The JournalTOCs Index

journal-tocs-logo.jpg?w=584

www.journaltocs.ac.uk

General Impact Factor (GIF) Index

images?q=tbn%3AANd9GcQ0CrEQm4bHBnwh4XJv9I3ZCdHgQarj_qLyPTkGpeoRRmNh10eC

generalif.com

Directory of Research Journals Indexing

DRJI_Logo.jpg

olddrji.lbp.world/indexedJournals.aspx

I2OR Index

8c492a0a466f9b2cd59ec89595639a5c?AccessKeyId=245B99561176BAE11FEB&disposition=0&alloworigin=1

http://www.i2or.com/8.html



logo.png