Research Article
BibTex RIS Cite

Lojistik Regresyon Modellerinde Küçük Veri Setleri İçin LASSO Tahmincisi

Year 2021, Volume: 4 Issue: 1, 69 - 72, 15.01.2021

Abstract

Değişken seçimi, regresyon analizinde kullanılan önemli bir konudur. Regresyon analizinde, LASSO (En Küçük Mutlak Daralma ve Seçim Operatörü) değişken seçimine benzer olarak seyrek çözümler sunmaktadır. LASSO, daraltma ve değişken seçimi işlemlerini aynı anda yapabilen kullanışlı bir araçtır ve LASSO ceza kriteri, parametre tahminlerini tam olarak sıfır değerine indirebilir. Genellikle büyük veri kümelerinde kullanılır fakat bu çalışmada, özellikle küçük veri setlerinde bazı bilgi kriterlerini kullanarak çok değişkenli Bernoulli lojistik modelleri için değişken seçim problemi ele alınmıştır. Model seçiminde kullanılan dört farklı bilgi kritere göre elde edilen simülasyon sonuçları karşılaştırılmıştır.

Supporting Institution

Ondokuz Mayıs Üniversitesi

Project Number

PYO. SCIENCE. 1904.17.002

References

  • Tibshirani R. “Regression shrinkage and selection via the lasso”. Journal of the Royal Statistical Society. Series B (Methodological), 267-288, 1996.
  • Tibshirani R. “Regression shrinkage and selection via the lasso: a retrospective”. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73 (3), 273-282, 2011.
  • Donoho DL, Johnstone JM. “Ideal spatial adaptation by wavelet shrinkage”. Biometrika, 81 (3), 425-455, 1994.
  • Wu TT, Lange K. “Coordinate descent algorithms for lasso penalized regression”. The Annals of Applied Statistics, 224-244, 2008.
  • Efron B, Hastie T, Johnstone I, Tibshirani, R. “Least angle regression". The Annals of statistics, 32 (2), 407-499, 2004.
  • Friedman J, Hastie T, Höfling H, Tibshirani R. “Pathwise coordinate optimization”. The Annals of Applied Statistics, 1 (2), 302-332, 2007.
  • Dai B. MVB: Multivariate Bernoulli log-linear model. R package version, 1, 2013.
  • Dai B. Multivariate Bernoulli distribution models. Technical Report, Department of Statistics, University of Wisconsin, Madison, WI 53706, 2012.
  • Akaike H. Information theory and an extension of the maximum likelihood principle. Proc. 2nd Inter. Symposium on Information Theory, 267- 281, Budapest, 1973.
  • Schwarz G. “Estimating the dimension of a model”. The Annals of Statistics, 6 (2), 461- 464, 1978.
  • Xiang D, Wahba G. “A generalized approximate cross validation for smoothing splines with non-Gaussian data”. Statistica Sinica, 675-692, 1996.

LASSO Estimator in Logistic Regression for Small Data Sets

Year 2021, Volume: 4 Issue: 1, 69 - 72, 15.01.2021

Abstract

Variable selection is an important subject in regression analysis. In regression analysis, the LASSO (Least Absolute Shrinkage and Selection Operator) provides sparse solutions to lead to variable selection. LASSO is a useful tool to achieve the shrinkage and variable selection simultaneously and the LASSO penalty term can shrink the parameter estimates toward exactly to zero. It is used generally in large data sets but in this article, we consider the variable selection problem for the multivariate Bernoulli logistic models adopting some information criteria especially in small data sets. Results of simulation were compared according to the four different criteria used for model selection.

Project Number

PYO. SCIENCE. 1904.17.002

References

  • Tibshirani R. “Regression shrinkage and selection via the lasso”. Journal of the Royal Statistical Society. Series B (Methodological), 267-288, 1996.
  • Tibshirani R. “Regression shrinkage and selection via the lasso: a retrospective”. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73 (3), 273-282, 2011.
  • Donoho DL, Johnstone JM. “Ideal spatial adaptation by wavelet shrinkage”. Biometrika, 81 (3), 425-455, 1994.
  • Wu TT, Lange K. “Coordinate descent algorithms for lasso penalized regression”. The Annals of Applied Statistics, 224-244, 2008.
  • Efron B, Hastie T, Johnstone I, Tibshirani, R. “Least angle regression". The Annals of statistics, 32 (2), 407-499, 2004.
  • Friedman J, Hastie T, Höfling H, Tibshirani R. “Pathwise coordinate optimization”. The Annals of Applied Statistics, 1 (2), 302-332, 2007.
  • Dai B. MVB: Multivariate Bernoulli log-linear model. R package version, 1, 2013.
  • Dai B. Multivariate Bernoulli distribution models. Technical Report, Department of Statistics, University of Wisconsin, Madison, WI 53706, 2012.
  • Akaike H. Information theory and an extension of the maximum likelihood principle. Proc. 2nd Inter. Symposium on Information Theory, 267- 281, Budapest, 1973.
  • Schwarz G. “Estimating the dimension of a model”. The Annals of Statistics, 6 (2), 461- 464, 1978.
  • Xiang D, Wahba G. “A generalized approximate cross validation for smoothing splines with non-Gaussian data”. Statistica Sinica, 675-692, 1996.
There are 11 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Aslı Yaman 0000-0003-2886-6765

Mehmet Ali Cengiz 0000-0002-1271-2588

Project Number PYO. SCIENCE. 1904.17.002
Publication Date January 15, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Yaman, A., & Cengiz, M. A. (2021). LASSO Estimator in Logistic Regression for Small Data Sets. Veri Bilimi, 4(1), 69-72.



Dergimizin Tarandığı Dizinler (İndeksler)


Academic Resource Index

logo.png

journalseeker.researchbib.com

Google Scholar

scholar_logo_64dp.png

ASOS Index

asos-index.png

Rooting Index

logo.png

www.rootindexing.com

The JournalTOCs Index

journal-tocs-logo.jpg?w=584

www.journaltocs.ac.uk

General Impact Factor (GIF) Index

images?q=tbn%3AANd9GcQ0CrEQm4bHBnwh4XJv9I3ZCdHgQarj_qLyPTkGpeoRRmNh10eC

generalif.com

Directory of Research Journals Indexing

DRJI_Logo.jpg

olddrji.lbp.world/indexedJournals.aspx

I2OR Index

8c492a0a466f9b2cd59ec89595639a5c?AccessKeyId=245B99561176BAE11FEB&disposition=0&alloworigin=1

http://www.i2or.com/8.html



logo.png