Research Article
BibTex RIS Cite

Kural Tabanlı Sınıflandırma Algoritmalarının Karşılaştırılması

Year 2021, Volume: 4 Issue: 3, 72 - 80, 30.12.2021

Abstract

Sınıflandırma, bir veri işleme yöntemi ve bir gruptaki öğeleri hedef sınıfa atayan bir veri madenciliği tekniğidir. Veri analizinde kullanılan yöntemleri uygulayarak verileri sınıflandırma, bir dizi girdi verisi için sınıflandırma modelleri oluşturmak için kullanılan bir prosedürdür. Sınıflandırma algoritmaları sinir ağı temelli algoritmalar, kural tabanlı algoritmalar ve istatistik tabanlı algoritmalar olmak üzere ayırılır. Bu çalışma kural tabanlı sınıflandırma algoritmalarından FURIA, PART, Karar Ağaçları ve JRIP algoritmalarını karşılaştırmak ve analiz etmek üzere hazırlanmıştır. Bu algoritmalar kullanılarak WEKA platformunda Wine, Soybean, Labor, Sensör, Hipotiroid, Diabet, Kredi card, Messidor_futures veri setleri incelenmiştir. Belirtilen veri setleri ve algoritmalar sınıflandırılan örneklerin sayısı, yüzdesi, ortalama mutlak hata (MAE), kök ortalama kare hata (RMSE) özellikleri referans alınarak karşılaştırılmıştır. Bu karşılaştırmada en iyi algoritmanın bulanık mantık tabanlı algoritma olan FURIA algoritması olduğu görülmektedir.

References

  • Andreeva P., Dimitrova M., ve Radeva P., (2004). “Data Mining Learning Models And Algorithms For Medical Application”, Proceedings Of The 18-Th Conference On Saer, Pp 11-18.
  • Anil RAJPUT, Ramesh Prasad Aharwal, Meghna Dubey, S.P. Saxena,(2011) “J48 ve JRIP Rules for E-Governance Data.” IJCSS-448 .
  • Buddhinath G. ve Derry D., (2006). “A Simple Enhancement to One Rule Classification.” Department of Computer Science & Software Engineering University of Melbourne, Australia.
  • Chung F..L, Shitong W., Zhaohong D., Dewen H.,(2004) . Fuzzy kernel hyperball perceptron, Appl. Soft Comput. 5 ( 67–74).
  • Craft J.L.,(1990). Statistics and Data Analysis for Social Workers, second ed., F.E. Peacock Publishers, USA.
  • Cohen, W.W., (1995). Fast effective rule induction. In Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, CA, USA, 9–12; pp. 115–123.
  • Dietrich, D., Heller, B., Yang, B., (2015). Data Science & Big Data Analytics. John Wiley & Sons, U.S.A., 409.
  • Duda R.O., Hart P.E., Stork D.G., (2001). Pattern Classification, second ed., Wiley, New York.
  • Fawcett T., (2006). An introduction to ROC analysis, Pattern recognition letter; 27 (8): 861–874.
  • Frank E. ve Witten I.H., (1998). Generating accurate rule sets without global optimisation, in: J. Shavlik (Ed.), Machine Learning, Proceedings of the Fifteenth International Conference, Morgan Kaufmann, San Francisco, CA.
  • Fürnkranz, J., Widmer, G., (1994). Incremental reduced error pruning. In Proceedings of the Eleventh International Conference, New Brunswick, NJ, USA, 10–13; pp. 70–77.
  • Flach, P., (2012). Machine Learning: The Art and Science of Algorithms that Make Sense of Data, 1st, Cambridge University Press Glasgow, UK, ISBN: 978-1-107-09639-4.
  • Haciefendioğlu, Ş., (2012). Makine Öğrenmesi Yöntemleri ile Glokom Hastalığının Teşhisi. Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
  • Han, J., Kamber, M., Pei, J., (2012). Data Mining: Concepts and Techniques. Morgan Kaufmann, 740.
  • Holte R.C., (1993). Very simple classification rules perform well on most commonly used dataset, Mach. Learn. 11 – ( 63–91). Hühn J. ve Hüllermeier E., (2009). FURIA: an algorithm for unordered fuzzy rule induction. Data Min Knowl Disc 19(3):293–319
  • Japkowicz N., (2011). Performance evaluation for learning algorithms, Cambridge University Press, Cambridge.
  • John G.H, Langley P., (1995). Estimating continuous distributions in Bayesian classifiers, in: Proceeding of the Eleventh Confer- ence on Uncertainty in Artificial Intelligence, Morgan Kauf- mann, San Mateo, CA, pp. 338–345.
  • Küçüksille, E. (2009). Veri Madenciliği Süreci Kullanılarak Portföy Performansının Değerlendirilmesi ve İmkb Hisse Senetleri Piyasasında Bir Uygulama, Doktora Tezi, Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü. Isparta.
  • Lodhi H., Shawe-Taylor J., Christianini N., Watkins C., (2001). Text classification using string kernels, in: T. Leen, T. Dietterich, V. Tresp (Eds.), Advances in Neural Information Processing Systems, vol. 13, MIT Press, 2.
  • Qidwai U., Chaudhry J., Jabbar S., Zeeshan HMA., Janjua N., Khalid S., (2019). Using casual reasoning for anomaly detection among ECG live data streams in ubiquitous healthcare monitoring systems. J Ambient Intell Humaniz Comput 10(10):4085–4097
  • Quinlan R., (1993). C4.5: Programs for Machine Learning, Morgan Kaufman, San Mateo, CA.
  • Rajput, A., Aharwal, R.P., Dubey, M., Saxena, S., Raghuvanshi, M., (2011). J48 and JRIP rules for e-governance data. IJCSS, 5, 201.
  • Salem O., Serhrouchni A., Mehaoua A., Boutaba R., (2018). Event detec- tion in wireless body area networks using Kalman filter and power divergence. IEEE Trans Netw Serv Manag 15(3):1018–1034.
  • Witten, I.H., Frank, E.; Hall, M.A., (2011). Introduction to Weka. In Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Witten, I.H., Frank, E., Hall, M.A., Eds.; The Morgan Kaufmann Series in Data Management Systems, Morgan Kaufmann: Boston, MA, USA; pp. 403–406.
Year 2021, Volume: 4 Issue: 3, 72 - 80, 30.12.2021

Abstract

References

  • Andreeva P., Dimitrova M., ve Radeva P., (2004). “Data Mining Learning Models And Algorithms For Medical Application”, Proceedings Of The 18-Th Conference On Saer, Pp 11-18.
  • Anil RAJPUT, Ramesh Prasad Aharwal, Meghna Dubey, S.P. Saxena,(2011) “J48 ve JRIP Rules for E-Governance Data.” IJCSS-448 .
  • Buddhinath G. ve Derry D., (2006). “A Simple Enhancement to One Rule Classification.” Department of Computer Science & Software Engineering University of Melbourne, Australia.
  • Chung F..L, Shitong W., Zhaohong D., Dewen H.,(2004) . Fuzzy kernel hyperball perceptron, Appl. Soft Comput. 5 ( 67–74).
  • Craft J.L.,(1990). Statistics and Data Analysis for Social Workers, second ed., F.E. Peacock Publishers, USA.
  • Cohen, W.W., (1995). Fast effective rule induction. In Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, CA, USA, 9–12; pp. 115–123.
  • Dietrich, D., Heller, B., Yang, B., (2015). Data Science & Big Data Analytics. John Wiley & Sons, U.S.A., 409.
  • Duda R.O., Hart P.E., Stork D.G., (2001). Pattern Classification, second ed., Wiley, New York.
  • Fawcett T., (2006). An introduction to ROC analysis, Pattern recognition letter; 27 (8): 861–874.
  • Frank E. ve Witten I.H., (1998). Generating accurate rule sets without global optimisation, in: J. Shavlik (Ed.), Machine Learning, Proceedings of the Fifteenth International Conference, Morgan Kaufmann, San Francisco, CA.
  • Fürnkranz, J., Widmer, G., (1994). Incremental reduced error pruning. In Proceedings of the Eleventh International Conference, New Brunswick, NJ, USA, 10–13; pp. 70–77.
  • Flach, P., (2012). Machine Learning: The Art and Science of Algorithms that Make Sense of Data, 1st, Cambridge University Press Glasgow, UK, ISBN: 978-1-107-09639-4.
  • Haciefendioğlu, Ş., (2012). Makine Öğrenmesi Yöntemleri ile Glokom Hastalığının Teşhisi. Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
  • Han, J., Kamber, M., Pei, J., (2012). Data Mining: Concepts and Techniques. Morgan Kaufmann, 740.
  • Holte R.C., (1993). Very simple classification rules perform well on most commonly used dataset, Mach. Learn. 11 – ( 63–91). Hühn J. ve Hüllermeier E., (2009). FURIA: an algorithm for unordered fuzzy rule induction. Data Min Knowl Disc 19(3):293–319
  • Japkowicz N., (2011). Performance evaluation for learning algorithms, Cambridge University Press, Cambridge.
  • John G.H, Langley P., (1995). Estimating continuous distributions in Bayesian classifiers, in: Proceeding of the Eleventh Confer- ence on Uncertainty in Artificial Intelligence, Morgan Kauf- mann, San Mateo, CA, pp. 338–345.
  • Küçüksille, E. (2009). Veri Madenciliği Süreci Kullanılarak Portföy Performansının Değerlendirilmesi ve İmkb Hisse Senetleri Piyasasında Bir Uygulama, Doktora Tezi, Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü. Isparta.
  • Lodhi H., Shawe-Taylor J., Christianini N., Watkins C., (2001). Text classification using string kernels, in: T. Leen, T. Dietterich, V. Tresp (Eds.), Advances in Neural Information Processing Systems, vol. 13, MIT Press, 2.
  • Qidwai U., Chaudhry J., Jabbar S., Zeeshan HMA., Janjua N., Khalid S., (2019). Using casual reasoning for anomaly detection among ECG live data streams in ubiquitous healthcare monitoring systems. J Ambient Intell Humaniz Comput 10(10):4085–4097
  • Quinlan R., (1993). C4.5: Programs for Machine Learning, Morgan Kaufman, San Mateo, CA.
  • Rajput, A., Aharwal, R.P., Dubey, M., Saxena, S., Raghuvanshi, M., (2011). J48 and JRIP rules for e-governance data. IJCSS, 5, 201.
  • Salem O., Serhrouchni A., Mehaoua A., Boutaba R., (2018). Event detec- tion in wireless body area networks using Kalman filter and power divergence. IEEE Trans Netw Serv Manag 15(3):1018–1034.
  • Witten, I.H., Frank, E.; Hall, M.A., (2011). Introduction to Weka. In Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Witten, I.H., Frank, E., Hall, M.A., Eds.; The Morgan Kaufmann Series in Data Management Systems, Morgan Kaufmann: Boston, MA, USA; pp. 403–406.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Serpil Sevimli Deniz

Publication Date December 30, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

APA Sevimli Deniz, S. (2021). Kural Tabanlı Sınıflandırma Algoritmalarının Karşılaştırılması. Veri Bilimi, 4(3), 72-80.



Dergimizin Tarandığı Dizinler (İndeksler)


Academic Resource Index

logo.png

journalseeker.researchbib.com

Google Scholar

scholar_logo_64dp.png

ASOS Index

asos-index.png

Rooting Index

logo.png

www.rootindexing.com

The JournalTOCs Index

journal-tocs-logo.jpg?w=584

www.journaltocs.ac.uk

General Impact Factor (GIF) Index

images?q=tbn%3AANd9GcQ0CrEQm4bHBnwh4XJv9I3ZCdHgQarj_qLyPTkGpeoRRmNh10eC

generalif.com

Directory of Research Journals Indexing

DRJI_Logo.jpg

olddrji.lbp.world/indexedJournals.aspx

I2OR Index

8c492a0a466f9b2cd59ec89595639a5c?AccessKeyId=245B99561176BAE11FEB&disposition=0&alloworigin=1

http://www.i2or.com/8.html



logo.png