Research Article
BibTex RIS Cite

A COMPARISON OF MACHINE LEARNING PREDICTION MODELS FOR MATERNAL HEALTH RISK

Year 2024, Volume: 7 Issue: 2, 22 - 29, 26.12.2024

Abstract

Maternal health refers to the physical, mental and emotional level during pregnancy, birth and postpartum periods. Early prediction of any risk that will adversely affect the mother's health helps to take the necessary precautions before birth. With machine learning methods, the risk level that will affect the health of mother and baby can be monitored and predicted. In this study, support vector machines, artificial neural network, XGBoost, AdaBoost and Gradient Boosting algorithms from artificial intelligence algorithms were analyzed to predict maternal risk health. The results obtained with these methods were compared with each other and it was seen that XGBoost is the most successful model in predicting the risk level that will affect maternal health. In this way, different contingency conditions related to maternal health were assessed.

References

  • [1]. Thakkar, Dhruvi, Vaibhav C. Gandhi, Dhriti Trivedi. "Forecasting Maternal Women's Health Risks using Random Forest Classifier." International Conference on Inventive Computation Technologies (ICICT). IEEE, 2024.
  • [2]. Maheswari, B. Uma, Aniket Dixit, Alok Kumar Karn. "Machine Learning Algorithm for Maternal Health Risk Classification with SMOTE and Explainable AI." 9th International Conference for Convergence in Technology (I2CT). IEEE, 2024.
  • [3]. Olonade, O., Olawande, T. L., Alabi, O. J. & Imhonopi, D. “Maternal Mortality and Maternal Health Care in Nigeria: Implications for Socio-Economic Development.” Open access Macedonian journal of medical sciences vol. 7,5 849-855. 2019.
  • [4]. Musarandega, R., Nyakura, M., Machekano, R., Pattinson, R. & Munjanja, S. P. "Causes of maternal mortality in Sub-Saharan Africa: a systematic review of studies published from 2015 to 2020." Journal of Global Health. 2021.
  • [5]. World Health Organization. "Global health observatory (GHO) data." 2015.
  • [6]. Li, S., Wang, Z., Vieira, L. A., Zheutlin, A. B., Ru, B., Schadt, E., & Li, L., "Improving preeclampsia risk prediction by modeling pregnancy trajectories from routinely collected electronic medical record data." npj Digital Medicine 5.1. 2022.
  • [7]. Gunawardane, D. A. "Sri Lankan Newborns; Improving Survival and Well-Being." Sri Lanka Journal of Medicine. 2024.
  • [8]. Grieger, J. A., Hutchesson, M. J., Cooray, S. D., Bahri Khomami, M., Zaman, S., Segan, L., & Moran, L. J. “A review of maternal overweight and obesity and its impact on cardiometabolic outcomes during pregnancy and postpartum.” Therapeutic advances in reproductive health 15, 2021: 2633494120986544.
  • [9]. Ramakrishnan, Rema, Shishir Rao, and Jian-Rong He. "Perinatal health predictors using artificial intelligence: A review." Women's Health 17, 2021: 17455065211046132.
  • [10]. Rai, S. K., and Sowmya, K. "A review on use of machine learning techniques in diagnostic health-care." Artificial Intelligent Systems and Machine Learning 10.4. 2018: 102-107.
  • [11]. Ahmed, M., Kashem, M. A., Rahman, M., & Khatun, S. “Review and analysis of risk factor of maternal health in remote area using the Internet of Things (IoT).” In InECCE2019: Proceedings of the 5th International Conference on Electrical, Control & Computer Engineering, Kuantan, Pahang, Malaysia, 29th July 2019 (pp. 357-365). Springer Singapore. 2020.
  • [12]. Ramdhani, Y., Maulidia, D., Setiadi, A., & Alamsyah, D. P. “Feature Weighting Optimization: Genetic Algorithms and Random Forest for Classification of Pregnant Potential Risk.” In 2022 International Conference on Information Technology Research and Innovation (ICITRI) (pp. 95-100). IEEE. 2022.
  • [13]. Umoren, Imeh, A. Silas, & B. Ekong. "Modeling and prediction of pregnancy risk for efficient birth outcomes using decision tree classification and regression model." Artificial intelligence and soft computing 21st international conference, ICAISC. 2022.
  • [14]. Edayath, Prajina. Analysis Of Factors Affecting Maternal Health Using Data Mining Techniques. MS thesis. The University of Texas at El Paso, 2022.
  • [15]. Mutlu, H.B., Durmaz, F., Yücel, N., Cengil, E., ve Yıldırım, M. "Prediction of maternal health risk with traditional machine learning methods." Naturengs 4.1. 2023: 16-23.
  • [16]. Şahin, F., Tulum, G. and Karaca, Ş. "Anne Sağlığı Riski İçin Makine Öğrenmesi Modellerinin Performans Karşılaştırması." Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi 14.4. 2023: 547-553.
  • [17]. Ahmed, M., Kashem, M.A., Rahman, M., & Khatun, S. “Review and Analysis of Risk Factor of Maternal Health in Remote Area Using the Internet of Things (IoT).” Lecture Notes in Electrical Engineering. 2020.
  • [18]. Üzen, H., Fırat, H. "Göğüs Röntgeni Görüntülerinden Akciğer Hastalıklarının Sınıflandırılması için Farklı Derin Öznitelikler ile Beslenen Destek Vektör Makinesi." Bilişim Teknolojileri Dergisi 17.1. 2024: 11-21.
  • [19]. Elen, A., Baş, S. & Közkurt, C. "An adaptive Gaussian kernel for support vector machine." Arabian Journal for Science and Engineering 47.8. 2022: 10579-10588.
  • [20]. Yusufoğlu, H., Aydın, H. & Çetinkaya, A. "Twitter Üzerindeki Finansal Tweetlerin LSTM Sinir Ağı Algoritması ile Duygu Analizi." Veri Bilimi 4.3. 2021: 28-43.
  • [21]. Keskenler, M. F., Keskenler, E. F. "Geçmişten günümüze yapay sinir ağları ve tarihçesi." Takvim-i Vekayi 5.2. 2017: 8-18.
  • [22]. Eğrioğlu, E., U. Yolcu, & E. Baş. "Yapay sinir ağları öngörü ve tahmin uygulamaları." Nobel Yayıncılık. 2019.
  • [23]. Fangoh, A. M., Selim, S. "Using CNN-XGBoost deep networks for COVID-19 detection in chest X-ray images." 2020 15th international conference on computer engineering and systems (ICCES). IEEE, 2020.
  • [24]. Azizoğlu F. “Makine Öğrenmesi Yöntemleriyle Kalp Hastalıklarının Sağkalım Tahmini”, Yüksek Lisans Tezi, Bilgisayar Mühendisliği Ana Bilim Dalı, Sivas Cumhuriyet Üniversitesi. 2023.
  • [25]. Freund, Y., Schapire, R. E. "A decision-theoretic generalization of on-line learning and an application to boosting." Journal of computer and system sciences 55.1. 1997: 119-139.
  • [26]. Thomas, T., Vijayaraghavan, A. P., & Emmanuel, S. “Machine learning approaches in cyber security analytics.” Singapore: Springer, 2020.
  • [27]. Friedman, J., Hastie, T., & Tibshirani, R. "Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)." The annals of statistics 28.2. 2000: 337-407.
  • [28]. Yeşilyurt, S., Dalkılıç, H. "Xgboost ve gradient boost machine ile günlük nehir akımı tahmini." 3rd International Symposium of III Engineering Applications on Civil Engineering and Earth Sciences. 2021.
  • [29]. Kayaalp, K., Varol, A. “LeNet ve ResNet Derin Öğrenme Modelleri ile Asma Yapraklarının Sınıflandırması”. Veri Bilimi, 7(1), 16-25. 2024.
  • [30]. Kılıçer, S., Şamlı, R. "E-Ticaret Sitelerindeki Türkçe Ürün Yorumları Üzerine Makine Öğrenmesi Algoritmaları ile Duygu Analizi." Veri Bilimi 6.2: 15-23. [31]. Özcan, I., Aydın, H., & Çetinkaya, A. "Comparison of classification success rates of different machine learning algorithms in the diagnosis of breast cancer." Asian Pacific journal of cancer prevention: APJCP 23.10. 2022: 3287.

ANNE SAĞLIĞI RİSKİNE YÖNELİK MAKİNE ÖĞRENMESİ TAHMİN MODELLERİ KARŞILAŞTIRILMASI

Year 2024, Volume: 7 Issue: 2, 22 - 29, 26.12.2024

Abstract

Anne sağlığı hamilelik, doğum ve doğum sonrası dönemlerdeki fiziksel, ruhsal ve duygusal düzeyini ifade etmektedir. Annenin sağlığını olumsuz etkileyecek herhangi bir riskin erken tahmin edilmesi, doğumdan önce gerekli önlemlerin alınmasında yardımcı olmaktadır. Makine öğrenmesi yöntemleri ile anne ve bebeğin sağlığını etkileyecek risk düzeyi izlenebilir ve tahmini gerçekleştirilebilir. Bu çalışmada, anne risk sağlığını tahmin edebilmek için yapay zeka algoritmalarından destek vektör makineleri, yapay sinir ağı, XGBoost, AdaBoost ve Gradient Boosting algoritmaları ile analizler gerçekleştirilmiştir. Bu yöntemler ile elde edilen sonuçlar birbiri ile karşılaştırılmış ve anne sağlığını etkileyecek risk düzeyini tahmin etmede en başarılı model XGBoost olduğu görülmüştür. Bu sayede anne sağlığı ile ilgili farklı olasılık koşulları değerlendirilmiştir.

References

  • [1]. Thakkar, Dhruvi, Vaibhav C. Gandhi, Dhriti Trivedi. "Forecasting Maternal Women's Health Risks using Random Forest Classifier." International Conference on Inventive Computation Technologies (ICICT). IEEE, 2024.
  • [2]. Maheswari, B. Uma, Aniket Dixit, Alok Kumar Karn. "Machine Learning Algorithm for Maternal Health Risk Classification with SMOTE and Explainable AI." 9th International Conference for Convergence in Technology (I2CT). IEEE, 2024.
  • [3]. Olonade, O., Olawande, T. L., Alabi, O. J. & Imhonopi, D. “Maternal Mortality and Maternal Health Care in Nigeria: Implications for Socio-Economic Development.” Open access Macedonian journal of medical sciences vol. 7,5 849-855. 2019.
  • [4]. Musarandega, R., Nyakura, M., Machekano, R., Pattinson, R. & Munjanja, S. P. "Causes of maternal mortality in Sub-Saharan Africa: a systematic review of studies published from 2015 to 2020." Journal of Global Health. 2021.
  • [5]. World Health Organization. "Global health observatory (GHO) data." 2015.
  • [6]. Li, S., Wang, Z., Vieira, L. A., Zheutlin, A. B., Ru, B., Schadt, E., & Li, L., "Improving preeclampsia risk prediction by modeling pregnancy trajectories from routinely collected electronic medical record data." npj Digital Medicine 5.1. 2022.
  • [7]. Gunawardane, D. A. "Sri Lankan Newborns; Improving Survival and Well-Being." Sri Lanka Journal of Medicine. 2024.
  • [8]. Grieger, J. A., Hutchesson, M. J., Cooray, S. D., Bahri Khomami, M., Zaman, S., Segan, L., & Moran, L. J. “A review of maternal overweight and obesity and its impact on cardiometabolic outcomes during pregnancy and postpartum.” Therapeutic advances in reproductive health 15, 2021: 2633494120986544.
  • [9]. Ramakrishnan, Rema, Shishir Rao, and Jian-Rong He. "Perinatal health predictors using artificial intelligence: A review." Women's Health 17, 2021: 17455065211046132.
  • [10]. Rai, S. K., and Sowmya, K. "A review on use of machine learning techniques in diagnostic health-care." Artificial Intelligent Systems and Machine Learning 10.4. 2018: 102-107.
  • [11]. Ahmed, M., Kashem, M. A., Rahman, M., & Khatun, S. “Review and analysis of risk factor of maternal health in remote area using the Internet of Things (IoT).” In InECCE2019: Proceedings of the 5th International Conference on Electrical, Control & Computer Engineering, Kuantan, Pahang, Malaysia, 29th July 2019 (pp. 357-365). Springer Singapore. 2020.
  • [12]. Ramdhani, Y., Maulidia, D., Setiadi, A., & Alamsyah, D. P. “Feature Weighting Optimization: Genetic Algorithms and Random Forest for Classification of Pregnant Potential Risk.” In 2022 International Conference on Information Technology Research and Innovation (ICITRI) (pp. 95-100). IEEE. 2022.
  • [13]. Umoren, Imeh, A. Silas, & B. Ekong. "Modeling and prediction of pregnancy risk for efficient birth outcomes using decision tree classification and regression model." Artificial intelligence and soft computing 21st international conference, ICAISC. 2022.
  • [14]. Edayath, Prajina. Analysis Of Factors Affecting Maternal Health Using Data Mining Techniques. MS thesis. The University of Texas at El Paso, 2022.
  • [15]. Mutlu, H.B., Durmaz, F., Yücel, N., Cengil, E., ve Yıldırım, M. "Prediction of maternal health risk with traditional machine learning methods." Naturengs 4.1. 2023: 16-23.
  • [16]. Şahin, F., Tulum, G. and Karaca, Ş. "Anne Sağlığı Riski İçin Makine Öğrenmesi Modellerinin Performans Karşılaştırması." Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi 14.4. 2023: 547-553.
  • [17]. Ahmed, M., Kashem, M.A., Rahman, M., & Khatun, S. “Review and Analysis of Risk Factor of Maternal Health in Remote Area Using the Internet of Things (IoT).” Lecture Notes in Electrical Engineering. 2020.
  • [18]. Üzen, H., Fırat, H. "Göğüs Röntgeni Görüntülerinden Akciğer Hastalıklarının Sınıflandırılması için Farklı Derin Öznitelikler ile Beslenen Destek Vektör Makinesi." Bilişim Teknolojileri Dergisi 17.1. 2024: 11-21.
  • [19]. Elen, A., Baş, S. & Közkurt, C. "An adaptive Gaussian kernel for support vector machine." Arabian Journal for Science and Engineering 47.8. 2022: 10579-10588.
  • [20]. Yusufoğlu, H., Aydın, H. & Çetinkaya, A. "Twitter Üzerindeki Finansal Tweetlerin LSTM Sinir Ağı Algoritması ile Duygu Analizi." Veri Bilimi 4.3. 2021: 28-43.
  • [21]. Keskenler, M. F., Keskenler, E. F. "Geçmişten günümüze yapay sinir ağları ve tarihçesi." Takvim-i Vekayi 5.2. 2017: 8-18.
  • [22]. Eğrioğlu, E., U. Yolcu, & E. Baş. "Yapay sinir ağları öngörü ve tahmin uygulamaları." Nobel Yayıncılık. 2019.
  • [23]. Fangoh, A. M., Selim, S. "Using CNN-XGBoost deep networks for COVID-19 detection in chest X-ray images." 2020 15th international conference on computer engineering and systems (ICCES). IEEE, 2020.
  • [24]. Azizoğlu F. “Makine Öğrenmesi Yöntemleriyle Kalp Hastalıklarının Sağkalım Tahmini”, Yüksek Lisans Tezi, Bilgisayar Mühendisliği Ana Bilim Dalı, Sivas Cumhuriyet Üniversitesi. 2023.
  • [25]. Freund, Y., Schapire, R. E. "A decision-theoretic generalization of on-line learning and an application to boosting." Journal of computer and system sciences 55.1. 1997: 119-139.
  • [26]. Thomas, T., Vijayaraghavan, A. P., & Emmanuel, S. “Machine learning approaches in cyber security analytics.” Singapore: Springer, 2020.
  • [27]. Friedman, J., Hastie, T., & Tibshirani, R. "Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)." The annals of statistics 28.2. 2000: 337-407.
  • [28]. Yeşilyurt, S., Dalkılıç, H. "Xgboost ve gradient boost machine ile günlük nehir akımı tahmini." 3rd International Symposium of III Engineering Applications on Civil Engineering and Earth Sciences. 2021.
  • [29]. Kayaalp, K., Varol, A. “LeNet ve ResNet Derin Öğrenme Modelleri ile Asma Yapraklarının Sınıflandırması”. Veri Bilimi, 7(1), 16-25. 2024.
  • [30]. Kılıçer, S., Şamlı, R. "E-Ticaret Sitelerindeki Türkçe Ürün Yorumları Üzerine Makine Öğrenmesi Algoritmaları ile Duygu Analizi." Veri Bilimi 6.2: 15-23. [31]. Özcan, I., Aydın, H., & Çetinkaya, A. "Comparison of classification success rates of different machine learning algorithms in the diagnosis of breast cancer." Asian Pacific journal of cancer prevention: APJCP 23.10. 2022: 3287.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Machine Learning (Other)
Journal Section Articles
Authors

Çisem Yaşar 0000-0002-0765-861X

Tuğba Saray Çetinkaya 0000-0003-1639-553X

Publication Date December 26, 2024
Submission Date September 5, 2024
Acceptance Date November 5, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Yaşar, Ç., & Saray Çetinkaya, T. (2024). ANNE SAĞLIĞI RİSKİNE YÖNELİK MAKİNE ÖĞRENMESİ TAHMİN MODELLERİ KARŞILAŞTIRILMASI. Veri Bilimi, 7(2), 22-29.



Dergimizin Tarandığı Dizinler (İndeksler)


Academic Resource Index

logo.png

journalseeker.researchbib.com

Google Scholar

scholar_logo_64dp.png

ASOS Index

asos-index.png

Rooting Index

logo.png

www.rootindexing.com

The JournalTOCs Index

journal-tocs-logo.jpg?w=584

www.journaltocs.ac.uk

General Impact Factor (GIF) Index

images?q=tbn%3AANd9GcQ0CrEQm4bHBnwh4XJv9I3ZCdHgQarj_qLyPTkGpeoRRmNh10eC

generalif.com

Directory of Research Journals Indexing

DRJI_Logo.jpg

olddrji.lbp.world/indexedJournals.aspx

I2OR Index

8c492a0a466f9b2cd59ec89595639a5c?AccessKeyId=245B99561176BAE11FEB&disposition=0&alloworigin=1

http://www.i2or.com/8.html



logo.png