Year 2024,
Volume: 7 Issue: 2, 11 - 21, 26.12.2024
Emre Duman
,
Kemal Fidanboylu
References
- [1] Singh S. “Critical reasons for crashes investigated in
the national motor vehicle crash causation survey”.
Technical Report, 2015.
- [2] Tefft BC. “Acute Sleep Deprivation and Risk of Motor
Vehicle Crash Involvement”. Technical Report,
Washington, D.C., Foundation for Traffic Safety, 2016.
- [3] Crayton TJ, Meier BM. “Autonomous vehicles:
Developing a public health research agenda to frame
the future of transportation policy”. Journal of
Transport & Health, 6, 245–252, 2017.
- [4] Waymo L. "On the road to fully self-driving". Waymo
Safety Report, 1-43, 2017.
- [5] Yurtsever E et al. “A survey of autonomous driving:
Common practices and emerging technologies”. IEEE
Access, 8, 58443-58469, 2020.
- [6] Fridman L, “Human-Centered Autonomous Vehicle
Systems: Principles of Effective Shared Autonomy”.
arXiv:1810.01835, 2018.
- [7] Yamazato T, Takai I, Okada H, Fujii T, Yendo T, Arai S,
Andoh M, Harada T, Yasutomi K, Kagawa K, Kawahito
S. “Image-Sensor-Based Visible Light Communication
for Automotive Applications”. IEEE Communications
Magazine vol. 52 no. 7, 88-97, 2014.
- [8] Neves R, Matos AC. “Raspberry PI based stereo vision
for small size ASVs”. IEEE OCEANS, San Diego, 1-6,
2013.
- [9] Maqueda AI, Loquercio A, Gallego G, Garcica N,
Scaramuzza D, “Event-based vision meets deep
learning on steering predicton for self-driving cars”.
IEEE Computer Vision and Pattern Recognition (CVPR),
5419-5427, 2018.
- [10] Steinbaeck J, Steger C, Holweg G, Druml N, “Next
Generation Radar Sensors in Automotive Sensor
Fusion Systems”. 2017 IEEE Sensor Data Fusion:
Trends, Solutions, Applications (SDF), 2017.
- [11] Borodacz K, Cezary S, Stanisław P, "Review and
selection of commercially available IMU for a short
time inertial navigation". Aircraft Engineering and
Aerospace Technology 94.1, 45-59, 2022.
- [12] Zhmud V A, Kondratiev N O, Kuznetson K A, Trubin V
G, Dimitrov L V, "Application of ultrasonic sensor for
measuring distances in robotics." Journal of Physics:
Conference Series, 1015, 3, 2018.
- [13] Day, C et al. “Pedestrian recognition and obstacle
avoidance for autonomous vehicles using raspberry
Pi”. Intelligent Systems Conference (IntelliSys), 2, 51-
69, 2020.
- [14] Kalms L et al. “Robust lane recognition for
autonomous driving”. IEEE Conference on Design and
Architectures for Signal and Image Processing (DASIP),
1-6, 2017.
- [15] Swaminathan, V et al. “Autonomous driving system
with road sign recognition using convolutional neural
networks”. IEEE International Conference on
Computational Intelligence in Data Science (ICCIDS), 1-
4, 2019.
- [16] Hwang K, Jung IH, Lee JM. “Implementation of
autonomous driving on RC-CAR with Raspberry PI
and AI server”. Webology, 19, 4444-4458, 2022.
- [17] Burleigh N, King J, Bräunl T. “Deep learning for
autonomous driving”. IEEE Digital Image Computing:
Techniques and Applications (DICTA), 1-8, 2019.
- [18] Dewangan DK, Sahu SP. “Deep learning-based speed
bump detection model for intelligent vehicle system
using raspberry pi”. IEEE Sensors Journal, 21(3),
3570-3578, 2020.
- [19] Ozkan Z et al. “Object detection and recognition of
unmanned aerial vehicles using Raspberry Pi
platform”. Fifth IEEE International symposium on
multidisciplinary studies and innovative technologies
(ISMSIT), 467-472, 2021.
- [20] Kim J, Han DS, Senouci B. “Radar and vision sensor
fusion for object detection in autonomous vehicle
surroundings”. Tenth IEEE International conference
on ubiquitous and future networks (ICUFN), 76-78,
2018.
- [21] Nobis F et al. “A deep learning-based radar and
camera sensor fusion architecture for object
detection”. IEEE Sensor Data Fusion: Trends, Solutions,
Applications (SDF), 1-7, 2019.
- [22] Lichtsteiner P, Posch C, Delbruck T. “A 128×128 120
db 15µs latency asynchronous temporal contrast
vision sensor”. IEEE Journal SolidState Circuits, 43(2),
566–576, 2008.
- [23] Thakur R “Scanning LIDAR in Advanced Driver
Assistance Systems and Beyond: Building a road map
for next-generation LIDAR technology”. IEEE
Consumer Electronics Magazine, 5(3), 48-54, 2016.
- [24] Baras N et al. “Autonomous obstacle avoidance
vehicle using LIDAR and an embedded system”. Eigth
IEEE International Conference on Modern Circuits and
Systems Technologies (MOCAST), 1-4. 2019.
- [25] Kutila M et al. “Automotive LIDAR sensor
development scenarios for harsh weather
conditions”. IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC). 265-270,
2016.
- [26] Jeong SH, Choi CG, Oh JN et al. “Low cost design of
parallel parking assist system based on an ultrasonic
sensor”. Int. J. Automot. Technol., 11, 409–416, 2010.
- [27] Paidi V et al. “Smart parking sensors, technologies and
applications for open parking lots: a review”. IET
Intelligent Transport Systems, 12(8) 735-741, 2018.
- [28] Rossi A et al. “Real-time lane detection and motion
planning in raspberry pi and arduino for an
autonomous vehicle prototype”. arXiv:2009.09391,
2020.
- [29] Thadeshwar H et al. “Artificial intelligence based selfdriving car”. Fourth IEEE International Conference on
Computer, Communication and Signal Processing
(ICCCSP), 1-5, 2020.
- [30] Sainath V et al. “Deep learning for autonomous
driving system”. Second IEEE International Conference
on Electronics and Sustainable Communication
Systems (ICESC), 1744-1749, 2021.
- [31] Jain AK. “Working model of self-driving car using
convolutional neural network, Raspberry Pi and
Arduino”. Second IEEE International Conference on
Electronics, Communication and Aerospace
Technology (ICECA), 1630-1635, 2018.
- [32] Kayaduman A et al. “Development and application of
sensor network for autonomous vehicles”. IEEE
International Conference on Artificial Intelligence and
Data Processing (IDAP), 1-5, 2018.
- [33] Hata A, Wolf D. “Road marking detection using LIDAR
reflective intensity data and its application to vehicle
localization”. 17th IEEE International Conference on
Intelligent Transportation Systems (ITSC), 584-589,
2014.
- [34] Kuutti S et al. “A survey of the state-of-the-art
localization techniques and their potentials for
autonomous vehicle applications”. IEEE Internet of
Things Journal, 5(2), 829-846, 2018.
- [35] Kocic J, Jovicic N, Drndarevic V, “Sensors and Sensor
Fusion in Autonomous Vehicles”. Telecommunications
forum (TELFOR), 20-21, 2018.
- [36] Yang Q, Sun J. “Location system of autonomous
vehicle based on data fusion”. IEEE International
Conference on Vehicular Electronics and Safety, 314-
318, 2006.
- [37] Zhang F et al. “A sensor fusion approach for
localization with cumulative error elimination”. IEEE
International Conference on Multisensor Fusion and
Integration for Intelligent Systems (MFI), 1-6, 2012.
- [38] Suhr JK et al. “Sensor fusion-based low-cost vehicle
localization system for complex urban
environments”. IEEE Transactions on Intelligent
Transportation Systems, 18(5), 1078-1086, 2016.
- [39] Oh SI, Kang HB. “Fast occupancy grid filtering using
grid cell clusters from LIDAR and stereo vision sensor
data”. IEEE Sensors Journal, 16(19), 7258-7266, 2016.
- [40] Alqaderi H, Schulz R, “Enhancement of LIDAR Data
Association and Fusion Using Imaging Radar GridMaps for Advanced Automotive Environment
Perception”. IEEE Sensor Data Fusion: Trends,
Solutions, Applications (SDF), 1-6, 2018.
- [41] Li Q, Li R, Ji K, Dai W, "Kalman filter and its
application." 8th IEEE International Conference on
Intelligent Networks and Intelligent Systems (ICINIS),
2015.
- [42] Aeberhard M, Kaempchen N, “High-Level Sensor Data
Fusion Architecture for Vehicle Surround
Environment Perception”. Proc. 8th Int. Workshop
Intell, 2011
- [43] Jeong DY, Velasco-Hernandez G, Barry J, Walsh J,
“Sensor and Sensor Fusion Technology in
Autonomous Vehicles: A Review”. State-of-the-Art
Sensors Technologies, 2021.
Otonom Araçlarda Nesne Tespiti, Şerit Tespiti, Haritalama ve Konumlandırmaya Yönelik Sensör Füzyon Tekniklerinin Uygulanması
Year 2024,
Volume: 7 Issue: 2, 11 - 21, 26.12.2024
Emre Duman
,
Kemal Fidanboylu
Abstract
Trafik kazaları çoğunlukla sürücü hatalarından kaynaklanmaktadır. Bu nedenle, otonom araçların bu kazaları önleme potansiyeli sürücünün araç ile olan bağını kestiğinden dolayı çok yüksektir. Otonom araçlar, çevreyi gözlemlemek için çeşitli sensörler kullanırlar ve bu sensörler, çevreyi doğru bir şekilde algılamak ve olası hataları azaltmak için sensör füzyon algoritmalarından yararlanırlar. Kameralar, radarlar, LiDAR'lar, IMU'lar, GPS ve ultrasonik sensörler, otonom araçlarda en yaygın kullanılan sensör türleridir. Bu bildiride, sensör verilerinin ve bunların füzyonuyla birlikte çeşitli filtreleme teknikleri ile iyileştirilmesi hakkında detaylı bilgi verecektir. Bildiride, otonom araçlarda bu teknolojilerin nesne tespiti, konum belirleme ve haritalama gibi işlevlerde nasıl kullanıldığı ve bunların potansiyel uygulamaları veriler eşliğinde görselleştirilmiştir. Ayrıca, 3 cm hata sapma miktarına sahip bir sensörden elde edilen verilerdeki hataların filtrelenmesi sonucunda verilerin gerçek değere %98,33 oranda yakınsadığı bununla birlikte sensör füzyonu tekniği ile de bu gerçek değere yakınsayan verinin %99’dan daha yüksek olduğu, dolayısıyla daha da doğru değerler verdiği gözlemlenmiştir.
Ethical Statement
Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz
ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun
davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak
gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir
değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını
ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim.
Herhangi bir zamanda, çalışmayla ilgili yaptığım bu beyana aykırı bir durumun
saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumu
bildiririm.
References
- [1] Singh S. “Critical reasons for crashes investigated in
the national motor vehicle crash causation survey”.
Technical Report, 2015.
- [2] Tefft BC. “Acute Sleep Deprivation and Risk of Motor
Vehicle Crash Involvement”. Technical Report,
Washington, D.C., Foundation for Traffic Safety, 2016.
- [3] Crayton TJ, Meier BM. “Autonomous vehicles:
Developing a public health research agenda to frame
the future of transportation policy”. Journal of
Transport & Health, 6, 245–252, 2017.
- [4] Waymo L. "On the road to fully self-driving". Waymo
Safety Report, 1-43, 2017.
- [5] Yurtsever E et al. “A survey of autonomous driving:
Common practices and emerging technologies”. IEEE
Access, 8, 58443-58469, 2020.
- [6] Fridman L, “Human-Centered Autonomous Vehicle
Systems: Principles of Effective Shared Autonomy”.
arXiv:1810.01835, 2018.
- [7] Yamazato T, Takai I, Okada H, Fujii T, Yendo T, Arai S,
Andoh M, Harada T, Yasutomi K, Kagawa K, Kawahito
S. “Image-Sensor-Based Visible Light Communication
for Automotive Applications”. IEEE Communications
Magazine vol. 52 no. 7, 88-97, 2014.
- [8] Neves R, Matos AC. “Raspberry PI based stereo vision
for small size ASVs”. IEEE OCEANS, San Diego, 1-6,
2013.
- [9] Maqueda AI, Loquercio A, Gallego G, Garcica N,
Scaramuzza D, “Event-based vision meets deep
learning on steering predicton for self-driving cars”.
IEEE Computer Vision and Pattern Recognition (CVPR),
5419-5427, 2018.
- [10] Steinbaeck J, Steger C, Holweg G, Druml N, “Next
Generation Radar Sensors in Automotive Sensor
Fusion Systems”. 2017 IEEE Sensor Data Fusion:
Trends, Solutions, Applications (SDF), 2017.
- [11] Borodacz K, Cezary S, Stanisław P, "Review and
selection of commercially available IMU for a short
time inertial navigation". Aircraft Engineering and
Aerospace Technology 94.1, 45-59, 2022.
- [12] Zhmud V A, Kondratiev N O, Kuznetson K A, Trubin V
G, Dimitrov L V, "Application of ultrasonic sensor for
measuring distances in robotics." Journal of Physics:
Conference Series, 1015, 3, 2018.
- [13] Day, C et al. “Pedestrian recognition and obstacle
avoidance for autonomous vehicles using raspberry
Pi”. Intelligent Systems Conference (IntelliSys), 2, 51-
69, 2020.
- [14] Kalms L et al. “Robust lane recognition for
autonomous driving”. IEEE Conference on Design and
Architectures for Signal and Image Processing (DASIP),
1-6, 2017.
- [15] Swaminathan, V et al. “Autonomous driving system
with road sign recognition using convolutional neural
networks”. IEEE International Conference on
Computational Intelligence in Data Science (ICCIDS), 1-
4, 2019.
- [16] Hwang K, Jung IH, Lee JM. “Implementation of
autonomous driving on RC-CAR with Raspberry PI
and AI server”. Webology, 19, 4444-4458, 2022.
- [17] Burleigh N, King J, Bräunl T. “Deep learning for
autonomous driving”. IEEE Digital Image Computing:
Techniques and Applications (DICTA), 1-8, 2019.
- [18] Dewangan DK, Sahu SP. “Deep learning-based speed
bump detection model for intelligent vehicle system
using raspberry pi”. IEEE Sensors Journal, 21(3),
3570-3578, 2020.
- [19] Ozkan Z et al. “Object detection and recognition of
unmanned aerial vehicles using Raspberry Pi
platform”. Fifth IEEE International symposium on
multidisciplinary studies and innovative technologies
(ISMSIT), 467-472, 2021.
- [20] Kim J, Han DS, Senouci B. “Radar and vision sensor
fusion for object detection in autonomous vehicle
surroundings”. Tenth IEEE International conference
on ubiquitous and future networks (ICUFN), 76-78,
2018.
- [21] Nobis F et al. “A deep learning-based radar and
camera sensor fusion architecture for object
detection”. IEEE Sensor Data Fusion: Trends, Solutions,
Applications (SDF), 1-7, 2019.
- [22] Lichtsteiner P, Posch C, Delbruck T. “A 128×128 120
db 15µs latency asynchronous temporal contrast
vision sensor”. IEEE Journal SolidState Circuits, 43(2),
566–576, 2008.
- [23] Thakur R “Scanning LIDAR in Advanced Driver
Assistance Systems and Beyond: Building a road map
for next-generation LIDAR technology”. IEEE
Consumer Electronics Magazine, 5(3), 48-54, 2016.
- [24] Baras N et al. “Autonomous obstacle avoidance
vehicle using LIDAR and an embedded system”. Eigth
IEEE International Conference on Modern Circuits and
Systems Technologies (MOCAST), 1-4. 2019.
- [25] Kutila M et al. “Automotive LIDAR sensor
development scenarios for harsh weather
conditions”. IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC). 265-270,
2016.
- [26] Jeong SH, Choi CG, Oh JN et al. “Low cost design of
parallel parking assist system based on an ultrasonic
sensor”. Int. J. Automot. Technol., 11, 409–416, 2010.
- [27] Paidi V et al. “Smart parking sensors, technologies and
applications for open parking lots: a review”. IET
Intelligent Transport Systems, 12(8) 735-741, 2018.
- [28] Rossi A et al. “Real-time lane detection and motion
planning in raspberry pi and arduino for an
autonomous vehicle prototype”. arXiv:2009.09391,
2020.
- [29] Thadeshwar H et al. “Artificial intelligence based selfdriving car”. Fourth IEEE International Conference on
Computer, Communication and Signal Processing
(ICCCSP), 1-5, 2020.
- [30] Sainath V et al. “Deep learning for autonomous
driving system”. Second IEEE International Conference
on Electronics and Sustainable Communication
Systems (ICESC), 1744-1749, 2021.
- [31] Jain AK. “Working model of self-driving car using
convolutional neural network, Raspberry Pi and
Arduino”. Second IEEE International Conference on
Electronics, Communication and Aerospace
Technology (ICECA), 1630-1635, 2018.
- [32] Kayaduman A et al. “Development and application of
sensor network for autonomous vehicles”. IEEE
International Conference on Artificial Intelligence and
Data Processing (IDAP), 1-5, 2018.
- [33] Hata A, Wolf D. “Road marking detection using LIDAR
reflective intensity data and its application to vehicle
localization”. 17th IEEE International Conference on
Intelligent Transportation Systems (ITSC), 584-589,
2014.
- [34] Kuutti S et al. “A survey of the state-of-the-art
localization techniques and their potentials for
autonomous vehicle applications”. IEEE Internet of
Things Journal, 5(2), 829-846, 2018.
- [35] Kocic J, Jovicic N, Drndarevic V, “Sensors and Sensor
Fusion in Autonomous Vehicles”. Telecommunications
forum (TELFOR), 20-21, 2018.
- [36] Yang Q, Sun J. “Location system of autonomous
vehicle based on data fusion”. IEEE International
Conference on Vehicular Electronics and Safety, 314-
318, 2006.
- [37] Zhang F et al. “A sensor fusion approach for
localization with cumulative error elimination”. IEEE
International Conference on Multisensor Fusion and
Integration for Intelligent Systems (MFI), 1-6, 2012.
- [38] Suhr JK et al. “Sensor fusion-based low-cost vehicle
localization system for complex urban
environments”. IEEE Transactions on Intelligent
Transportation Systems, 18(5), 1078-1086, 2016.
- [39] Oh SI, Kang HB. “Fast occupancy grid filtering using
grid cell clusters from LIDAR and stereo vision sensor
data”. IEEE Sensors Journal, 16(19), 7258-7266, 2016.
- [40] Alqaderi H, Schulz R, “Enhancement of LIDAR Data
Association and Fusion Using Imaging Radar GridMaps for Advanced Automotive Environment
Perception”. IEEE Sensor Data Fusion: Trends,
Solutions, Applications (SDF), 1-6, 2018.
- [41] Li Q, Li R, Ji K, Dai W, "Kalman filter and its
application." 8th IEEE International Conference on
Intelligent Networks and Intelligent Systems (ICINIS),
2015.
- [42] Aeberhard M, Kaempchen N, “High-Level Sensor Data
Fusion Architecture for Vehicle Surround
Environment Perception”. Proc. 8th Int. Workshop
Intell, 2011
- [43] Jeong DY, Velasco-Hernandez G, Barry J, Walsh J,
“Sensor and Sensor Fusion Technology in
Autonomous Vehicles: A Review”. State-of-the-Art
Sensors Technologies, 2021.