Research Article
BibTex RIS Cite

Bağımsız Hibrit Yenilenebilir Enerji Sistemlerinin Tekno-Ekonomik Optimizasyonu

Year 2025, Volume: 8 Issue: 1, 66 - 76, 23.06.2025

Abstract

Günümüzde tüm uluslar 2050 yılına kadar %100 yenilenebilir enerji kullanımına ulaşmayı, fosil yakıtlara olan bağımlılıklarını azaltmayı ve yenilenebilir enerji kaynaklarından yararlanmayı hedeflemektedir. Bu hedef doğrultusunda, güneş ve rüzgar hibrit enerji sistemleri öne çıkan çözümler olarak ortaya çıkmıştır. Ancak bu sistemlerin mevsimsel yapısı nedeniyle enerji depolama sistemlerine ihtiyaç duyulmaktadır. Bu çalışma, İzmir'de bir yerleşim yerinde fotovoltaik güneş ve rüzgar enerjisi hibrit sisteminin potansiyelini araştırmakta ve ekonomik, teknolojik ve çevresel uygunluğunu değerlendirmeyi amaçlamaktadır. Literatür taraması ve HOMER optimizasyon programının kullanıldığı bu çalışma, 96,7 kWp güneş ve 12 kW rüzgar enerjisinden oluşan bir sistemin ekonomik olarak uygulanabilir olduğunu ve Türkiye'nin %100 yenilenebilir enerji hedefiyle uyumlu olduğunu ortaya koymuştur. Bununla birlikte, yüksek yatırım maliyetleri nedeniyle, bu tür sistemlerin yalnızca belirli bölgelerde ekonomik olarak uygulanabilir olabileceği belirtilmektedir.

References

  • Khare, V., Nema, S., Baredar, P. “Solar–wind hybrid renewable energy system: A review”, Renewable and Sustainable Energy Reviews, 58, 23–33, 2016.
  • Nordin, N.D., Rahman, H.A. “Comparison of optimum design, sizing, and economic analysis of standalone photovoltaic/battery without and with hydrogen production systems”, Renewable Energy, 141, 107–123, 2019.
  • Agrawal, P.B., Tiwari, G.N. “Return on capital and earned carbon credit by hybrid solar photovoltaic—wind turbine generators”, Applied Solar Energy, 46, 33–45, 2010.
  • Saidur, R., Rahim, N.A., Islam, M.R., Solangi, K.H. “Environmental impact of wind energy”, Renewable and Sustainable Energy Reviews, 15(5), 2423–2430, 2011.
  • Sinha, S., Chandel, S.S. “Review of recent trends in optimization techniques for solar photovoltaic–wind-based hybrid energy systems”, Renewable and Sustainable Energy Reviews, 50, 755–769, 2015.
  • Miglietta, M.M., Huld, T., Monforti-Ferrario, F. “Local complementarity of wind and solar energy resources over Europe: an assessment study from a meteorological perspective”. Journal of Applied Meteorology and Climatology, 56(1), 217–234, 2017.
  • Engin, M. “Bornova için güneş-rüzgar hibrid enerji üretim sistemi tasarımı”, CBÜ Soma MYO Teknik Bilimler Dergisi Yıl:2010 Cilt:2 Sayı: 13, 2010.
  • Microgrid News HOMER. “About Homer Energy”, 2023.
  • Roy, T.K., Mahmud, Md.A., Oo, A.M.T., “Techno-economic feasibility of stand-alone hybrid energy systems for a remote Australian community: Optimization and sensitivity analysis”, Renewable Energy, 241, 1-23, 2025.
  • Jahangir, M.H., Mousavi, S.A., Vaziri M.A. “A techno economic comparison of a photovoltaic/thermal organic rankine cycle with several renewable hybrid systems for a residential area in Rayen, Iran”, Energy Conversion and Management, 195, 244– 261, 2019.
  • Bergey. “Bergey excel 6, the wise choice for performance, reliability, and ruggedness”, 2023.
  • SIRIUS. “Elnsm72m-HC-HV Series, monocrystalline Photovoltaic module” 540-555, 2022.
  • USFT Framework. ’unctad” framework for sustainable freight transport (unctad sft framework), 2017.
  • Sawle, Y., Marquez, F.P.G., Afthanorhan, A., “Techno-Economic-Environmental Assessment of Stand-alone Hybrid Renewable Energy System for Different Batteries using HOMER-Pro”, International Journal of Mathematic al Engineering and Management Sciences, 9(4), 779-800, 2024.
  • Mena, A.J.G., Bouakkaz, A., Pereira, J.M.A., Guerrero, L.S., Rodriquez, M.L.M., “Collective hydrogen stand-alone renewable energy systems for buildings in Spain. Towards the self-sufficiency”, International Journal of Hydrogen Energy, 72, 1274-1286, 2024.
  • Sadeghi, A., Maleki, A., Haghighat, S., “Techno-economic analysis and optimization of a hybrid solar-wind-biomass-battery framework for the electrification of a remote area: A case study”, Energy Conversion and Management, 24, 1-18, 2024.
  • Kumar, A., Kumar, M., Soomro, A.M., “Techno-Economic Optimization of Novel Stand-Alone Renewable-Based Electric Vehicle Charging Station in Karachi, Pakistan”, Energy Engineering, 121(6), 1439-1457, 2024.
  • Muhieitheen, M.K., Alquaity, A.B.S., Al-Solihat, M.K., “Techno-Economic Assessment of Stand-Alone Renewable Energy Powered Desalination and Hydrogen Production in NEOM, Saudi Arabia”, Renewable Energy, 241, 1-16, 2025.
  • Ali, M.B., Altamimi, A., Kazmi, S.A.A., “Techno-Economic-Environmental Optimization of On-Grid Hybrid Renewable Energy-Electric Vehicle Charging Stations in BTS Infrastructure”, Energy Conversion and Management, 23, 1-35, 2024.
  • Aktas, I.S., “Techno-Economic Feasibility Analysis and Optimization of On/Off-Grid Wind-Biogas-CHP Hybrid Energy System for the Electrification of University Campus”, Renewable Energy, 237, 1-19, 2024.

Techno-Economic Optimization of Stand Alone Hybrid Renewable Energy Systems

Year 2025, Volume: 8 Issue: 1, 66 - 76, 23.06.2025

Abstract

In contemporary times, all nations aim to achieve 100% renewable energy usage by 2050, reducing their dependency on fossil fuels and utilizing renewable energy sources. In pursuit of this goal, solar and wind hybrid energy systems have emerged as prominent solutions. However, due to the seasonal nature of these systems, there is a need for energy storage systems. This study investigates the potential of a photovoltaic solar and wind energy hybrid system in a settlement in Izmir, aiming to assess its economic, technological, and environmental suitability. This study utilizing a literature review and the HOMER optimization program revealed that a system comprising 96,7 kWp of solar and 12 kW of wind power is economically viable and aligns with Turkey’s 100% renewable energy target. Nevertheless, due to the high investment costs, it is noted that such systems may only be economically feasible in specific regions.

References

  • Khare, V., Nema, S., Baredar, P. “Solar–wind hybrid renewable energy system: A review”, Renewable and Sustainable Energy Reviews, 58, 23–33, 2016.
  • Nordin, N.D., Rahman, H.A. “Comparison of optimum design, sizing, and economic analysis of standalone photovoltaic/battery without and with hydrogen production systems”, Renewable Energy, 141, 107–123, 2019.
  • Agrawal, P.B., Tiwari, G.N. “Return on capital and earned carbon credit by hybrid solar photovoltaic—wind turbine generators”, Applied Solar Energy, 46, 33–45, 2010.
  • Saidur, R., Rahim, N.A., Islam, M.R., Solangi, K.H. “Environmental impact of wind energy”, Renewable and Sustainable Energy Reviews, 15(5), 2423–2430, 2011.
  • Sinha, S., Chandel, S.S. “Review of recent trends in optimization techniques for solar photovoltaic–wind-based hybrid energy systems”, Renewable and Sustainable Energy Reviews, 50, 755–769, 2015.
  • Miglietta, M.M., Huld, T., Monforti-Ferrario, F. “Local complementarity of wind and solar energy resources over Europe: an assessment study from a meteorological perspective”. Journal of Applied Meteorology and Climatology, 56(1), 217–234, 2017.
  • Engin, M. “Bornova için güneş-rüzgar hibrid enerji üretim sistemi tasarımı”, CBÜ Soma MYO Teknik Bilimler Dergisi Yıl:2010 Cilt:2 Sayı: 13, 2010.
  • Microgrid News HOMER. “About Homer Energy”, 2023.
  • Roy, T.K., Mahmud, Md.A., Oo, A.M.T., “Techno-economic feasibility of stand-alone hybrid energy systems for a remote Australian community: Optimization and sensitivity analysis”, Renewable Energy, 241, 1-23, 2025.
  • Jahangir, M.H., Mousavi, S.A., Vaziri M.A. “A techno economic comparison of a photovoltaic/thermal organic rankine cycle with several renewable hybrid systems for a residential area in Rayen, Iran”, Energy Conversion and Management, 195, 244– 261, 2019.
  • Bergey. “Bergey excel 6, the wise choice for performance, reliability, and ruggedness”, 2023.
  • SIRIUS. “Elnsm72m-HC-HV Series, monocrystalline Photovoltaic module” 540-555, 2022.
  • USFT Framework. ’unctad” framework for sustainable freight transport (unctad sft framework), 2017.
  • Sawle, Y., Marquez, F.P.G., Afthanorhan, A., “Techno-Economic-Environmental Assessment of Stand-alone Hybrid Renewable Energy System for Different Batteries using HOMER-Pro”, International Journal of Mathematic al Engineering and Management Sciences, 9(4), 779-800, 2024.
  • Mena, A.J.G., Bouakkaz, A., Pereira, J.M.A., Guerrero, L.S., Rodriquez, M.L.M., “Collective hydrogen stand-alone renewable energy systems for buildings in Spain. Towards the self-sufficiency”, International Journal of Hydrogen Energy, 72, 1274-1286, 2024.
  • Sadeghi, A., Maleki, A., Haghighat, S., “Techno-economic analysis and optimization of a hybrid solar-wind-biomass-battery framework for the electrification of a remote area: A case study”, Energy Conversion and Management, 24, 1-18, 2024.
  • Kumar, A., Kumar, M., Soomro, A.M., “Techno-Economic Optimization of Novel Stand-Alone Renewable-Based Electric Vehicle Charging Station in Karachi, Pakistan”, Energy Engineering, 121(6), 1439-1457, 2024.
  • Muhieitheen, M.K., Alquaity, A.B.S., Al-Solihat, M.K., “Techno-Economic Assessment of Stand-Alone Renewable Energy Powered Desalination and Hydrogen Production in NEOM, Saudi Arabia”, Renewable Energy, 241, 1-16, 2025.
  • Ali, M.B., Altamimi, A., Kazmi, S.A.A., “Techno-Economic-Environmental Optimization of On-Grid Hybrid Renewable Energy-Electric Vehicle Charging Stations in BTS Infrastructure”, Energy Conversion and Management, 23, 1-35, 2024.
  • Aktas, I.S., “Techno-Economic Feasibility Analysis and Optimization of On/Off-Grid Wind-Biogas-CHP Hybrid Energy System for the Electrification of University Campus”, Renewable Energy, 237, 1-19, 2024.
There are 20 citations in total.

Details

Primary Language English
Subjects Modelling and Simulation
Journal Section Articles
Authors

Yiğit Ersan

Koray Ulgen 0000-0002-9560-1727

Publication Date June 23, 2025
Submission Date September 27, 2024
Acceptance Date March 13, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Ersan, Y., & Ulgen, K. (2025). Techno-Economic Optimization of Stand Alone Hybrid Renewable Energy Systems. Veri Bilimi, 8(1), 66-76.