Loading [a11y]/accessibility-menu.js
BibTex RIS Cite

A new model proposal for evaluating the efficiency of university department by analytic hierarchy process (AHP) and data envelopment analysis (DEA)

Year 2010, Issue: 2, 7 - 22, 01.03.2010

Abstract

Nowadays, DEA is more frequently used in performance evaluation actions. This method is a relative method to find optimal DMUs which are evaluated according to other DMUs. For obtaining the efficiency scores of DMUs, DEA bases on the ratio of the weighted sum of outputs to the weighted sum of inputs. In the computation of related ratio, DEA uses maximum efficiency scores to obtain different input and output weights of each DMU. In some situations, DEA cannot find reliable results, so that it gives same importance to each of inputs and outputs. For example, DEA evaluates most of DMUs as efficient, or assigns zero value as the weights for some outputs and inputs which are seen pretty important in reality. In this study, a weighted restricted model is used which is based on expert opinions and tries to shoot the mentioned troubles by AHP. As an application, the weighted restricted and weighted unrestricted DEA models are evaluated and the results are compared. In this study, the results which are derived from weighted unrestricted Model 1 and from weighted restricted Model 2 are given Table 4 and Table 8, respectively. In the evaluation of weighted restricted Model 2, the input/output weights are restricted with the aid of AHP method to allocate the weights homogeneously. According to the results, 12 departments by weighted unrestricted Model 1 and 3 departments by weighted restricted Model 2 are found efficient. Finally, it is found that input/ output weights by weighted restricted Model 2 are more homogeneous than weighted unrestricted Model 1.

References

  • 1. Allen, R., Athanassopoulos, A., Dyson, R.G., Thanassoulis, E., “Weights Restrictions and Value Judgements in Data Envelopment Analysis: Evolution, Development and Future Directions”, Annals of Operations Research, 73, 13 -34 (1997)
  • 2. Azadeh, A., Ghaderi, S.F., Izadbakhsh, H., “Integration of DEA and AHP with Computer Simulation for Railway System Improvement and Optimization”, Applied Mathematics and Computation, 195, 775-785 (2008)
  • 3. Banker, R., Morey, R. , “Incorporating Value Judgements in Efficiency Analysis”, Research In Governmental and Non-Profit Accounting, 5, 245-267 (1989)
  • 4. Beasley, J.E., “Comparing University Departments”, Omega, 18, No.2, 171- 183 (1990)
  • 5. Charnes,A., Cooper, W.W., Rhodes, E., “Measuring the Efficiency of Decision Making Units”, Europenan Joumal of Operational Research, 2, 429-444 (1978)
  • 6. Charnes, A., Cooper, W., Huang, Z., Sun, D., “Polyhedral Cone-Ratio DEA Models with an Illustrative Application to Large Commercial Banks”, Journal of Econometrics, 46, 73-91 (1990)
  • 7. Cooper, W.W., Seiford, L.M., Tone, K., “Data Envelopment Analysis a Comprehensive Text with Models, Applications, References and DEA-Solver Software”, Kluwer Academic Publishers, Dordrecht, 96-108 (2000)
  • 8. Cook, W.D., Kress, M. “A Data Envelopment Analysis Model for Aggregating Preference Rankings”,Management Science 36, 1302-1310 (1990)
  • 9. Cook, W.D., Kress, M., Seiford, L “Prioritisation Models for Frontier Decision Making Units in DEA”, European Journal of Operational Research 59, 319- 323 (1992)
  • 10. Dyson, R.G., Thannassoulis, E., “Reducing Weight Flexibility in Data Envelopment Analysis”, Journal of the Operations Research Society, 39, No.6, 563- 576 (1988)
  • 11. Farrell, M.J., “The Measurement of Productive Efficiency” , Journal of Royal Statistical Society A, 120, 253-281 (1957)
  • 12. Kornbluth, J. , “Analysing Policy Effectiveness Using Cone Restricted Data Envelopment Analysis”, Journal of the Operational Research Society, 42, 1097-1104 (1991)
  • 13. Podinovski, V., “Side Effects of Absolute Weight Bounds in DEA models”; European Journal of Operational Research, 115, 583-595 (1999)
  • 14. Podinovski, V., and Athanassopoulos A.D., “Assessing the Relative Efficiency of Decision Making Units Using DEA Models with Weight Restrictions”; Journal of the Operational Research Society, 49, 500-508 (1998)
  • 15. Saaty, T.L., “A scaling method for priorities in hierarchical structures”, Scandinavian Journal of Forest Research, 15, 234-281 (1977)
  • 16. Saaty, T.L., “Analytic Hierarchy Process”, McGraw-Hil, (1980)
  • 17. Seiford, L.M., Zhu, J., “Identifying Excesses and Deficits in Chinese Industrial Productivity(1953-1990): a Weighted Data Envelopment Analysis Approach”, Omega, 26, No.2, 279-296 (1988)
  • 18. Shang, J., Sueyoshi, T.A., “A Unified Framework ort he Selection of a Flexible Manufacturing System”, European Journal of Operations Research, 2, 429-444 (1995)
  • 19. Stern, Z., Mehrez, A., Hadad, Y.,”An AHP/DEA Methodology for Ranking Decision Making Units”, International Transactions in Operational Research, 7, 109-124 (2000)
  • 20. Thanassoulis, E., Boussofiane, A., Dyson, R.G. “Exploring Output Quality Targets in the Provision of Perinatal Care in England Using DEA”, European Journal of Operational Research, 60, 588-608 (1995)
  • 21. Thompson, R.G., Singleton, F., Thrall R. , Smith, B., “Comparative Site Evaluations for Locating a High-Energy Physics Lab in Texas”, Interfaces 16, 35-49 (1986)
  • 22. Tone, K.A., “A Comparative Study on AHP and DEA”, International Journal of Policy and Information, 13, 57-63 (1989)
  • 23. 2003 Faaliyet Raporu, ODTÜ, Ankara, 20, 21, 32, 65, 67, 77-79, 90, (2004)

Analitik hiyerarşi süreci ve veri zarflama analizi ile bir üniversitenin bölümlerinin etkinliğinin değerlendirilmesinde yeni bir model önerisi

Year 2010, Issue: 2, 7 - 22, 01.03.2010

Abstract

Veri Zarflama Analizi (VZA), performans değerlendirmesi çalışmalarında günümüzde oldukça sık kullanılmaktadır. VZA, karar verme birimlerinin (KVB) etkinlerini belirleyip, diğerlerini de bu etkin KVB'lere göre değerlendiren göreceli bir yöntemdir. VZA, her bir KVB için etkinlik skorlarını elde etmek amacıyla, ağırlıklı çoklu çıktılar toplamının ağırlıklı çoklu girdiler toplamına oranını esas alır. Bu oranı hesaplarken, VZA, her bir KVB'nin maksimum etkinlik skorunu elde edecek farklı girdi ve çıktı ağırlıklarını kullanır. Ancak, VZA, KVB'lerinin her bir girdi ve çıktısına aynı önemi verdiği için, bazı durumlarda gerçekçi sonuçlar yakalayamamaktadır. Örneğin, bir VZA uygulamasında çok fazla sayıda KVB'nin etkin olarak değerlendirilmesi ya da gerçekte oldukça önemli görülen bazı girdi ve çıktılara sıfır ağırlıklarının atanması gibi. Bu çalışmada uzman görüşünü temel alan ve bu sorunları gidermeye çalışan Analitik Hiyerarşi Süreci (AHS)'nden yararlanarak, bir ağırlık kısıtlaması modeli kullanılmıştır. Uygulama olarak, ağırlık kısıtlamasız ve ağırlık kısıtlamalı VZA modeli ile bir üniversitenin bölümlerinin etkinliğinin değerlendirilmesi yapılmış ve sonuçlar karşılaştırılmıştır. Bu çalışmada, ağırlık kısıtlamasız Model 1 ile elde edilen sonuçlar Çizelge 4'te ve ağırlık kısıtlamalı Model 2 ile elde edilen sonuçlar Çizelge 8'de verilmiştir. Ağırlık kısıtlamalı Model 2'ye göre yapılan değerlendirmede; daha homojen bir ağırlık dağıtımı sağlamak amacıyla; girdi/çıktı ağırlıkları, AHS yöntemi yardımıyla kısıtlanmıştır. Elde edilen sonuçlara göre, ağırlık kısıtlamasız Model 1'e göre yapılan değerlendirmede 12 bölüm etkin bulunurken, ağırlık kısıtlamalı Model 2'ye göre yapılan değerlendirmede sadece 3 bölüm etkin bulunmuştur. Sonuç olarak, ağırlık kısıtlamalı Model 2 kullanılarak elde edilen girdi/çıktı ağırlıklarının, ağırlık kısıtlamasız Model 1'e göre daha homojen dağıldığı görülmüştür.

References

  • 1. Allen, R., Athanassopoulos, A., Dyson, R.G., Thanassoulis, E., “Weights Restrictions and Value Judgements in Data Envelopment Analysis: Evolution, Development and Future Directions”, Annals of Operations Research, 73, 13 -34 (1997)
  • 2. Azadeh, A., Ghaderi, S.F., Izadbakhsh, H., “Integration of DEA and AHP with Computer Simulation for Railway System Improvement and Optimization”, Applied Mathematics and Computation, 195, 775-785 (2008)
  • 3. Banker, R., Morey, R. , “Incorporating Value Judgements in Efficiency Analysis”, Research In Governmental and Non-Profit Accounting, 5, 245-267 (1989)
  • 4. Beasley, J.E., “Comparing University Departments”, Omega, 18, No.2, 171- 183 (1990)
  • 5. Charnes,A., Cooper, W.W., Rhodes, E., “Measuring the Efficiency of Decision Making Units”, Europenan Joumal of Operational Research, 2, 429-444 (1978)
  • 6. Charnes, A., Cooper, W., Huang, Z., Sun, D., “Polyhedral Cone-Ratio DEA Models with an Illustrative Application to Large Commercial Banks”, Journal of Econometrics, 46, 73-91 (1990)
  • 7. Cooper, W.W., Seiford, L.M., Tone, K., “Data Envelopment Analysis a Comprehensive Text with Models, Applications, References and DEA-Solver Software”, Kluwer Academic Publishers, Dordrecht, 96-108 (2000)
  • 8. Cook, W.D., Kress, M. “A Data Envelopment Analysis Model for Aggregating Preference Rankings”,Management Science 36, 1302-1310 (1990)
  • 9. Cook, W.D., Kress, M., Seiford, L “Prioritisation Models for Frontier Decision Making Units in DEA”, European Journal of Operational Research 59, 319- 323 (1992)
  • 10. Dyson, R.G., Thannassoulis, E., “Reducing Weight Flexibility in Data Envelopment Analysis”, Journal of the Operations Research Society, 39, No.6, 563- 576 (1988)
  • 11. Farrell, M.J., “The Measurement of Productive Efficiency” , Journal of Royal Statistical Society A, 120, 253-281 (1957)
  • 12. Kornbluth, J. , “Analysing Policy Effectiveness Using Cone Restricted Data Envelopment Analysis”, Journal of the Operational Research Society, 42, 1097-1104 (1991)
  • 13. Podinovski, V., “Side Effects of Absolute Weight Bounds in DEA models”; European Journal of Operational Research, 115, 583-595 (1999)
  • 14. Podinovski, V., and Athanassopoulos A.D., “Assessing the Relative Efficiency of Decision Making Units Using DEA Models with Weight Restrictions”; Journal of the Operational Research Society, 49, 500-508 (1998)
  • 15. Saaty, T.L., “A scaling method for priorities in hierarchical structures”, Scandinavian Journal of Forest Research, 15, 234-281 (1977)
  • 16. Saaty, T.L., “Analytic Hierarchy Process”, McGraw-Hil, (1980)
  • 17. Seiford, L.M., Zhu, J., “Identifying Excesses and Deficits in Chinese Industrial Productivity(1953-1990): a Weighted Data Envelopment Analysis Approach”, Omega, 26, No.2, 279-296 (1988)
  • 18. Shang, J., Sueyoshi, T.A., “A Unified Framework ort he Selection of a Flexible Manufacturing System”, European Journal of Operations Research, 2, 429-444 (1995)
  • 19. Stern, Z., Mehrez, A., Hadad, Y.,”An AHP/DEA Methodology for Ranking Decision Making Units”, International Transactions in Operational Research, 7, 109-124 (2000)
  • 20. Thanassoulis, E., Boussofiane, A., Dyson, R.G. “Exploring Output Quality Targets in the Provision of Perinatal Care in England Using DEA”, European Journal of Operational Research, 60, 588-608 (1995)
  • 21. Thompson, R.G., Singleton, F., Thrall R. , Smith, B., “Comparative Site Evaluations for Locating a High-Energy Physics Lab in Texas”, Interfaces 16, 35-49 (1986)
  • 22. Tone, K.A., “A Comparative Study on AHP and DEA”, International Journal of Policy and Information, 13, 57-63 (1989)
  • 23. 2003 Faaliyet Raporu, ODTÜ, Ankara, 20, 21, 32, 65, 67, 77-79, 90, (2004)
There are 23 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Emine Demet Mecit This is me

İhsan Alp This is me

Publication Date March 1, 2010
Submission Date August 16, 2014
Published in Issue Year 2010 Issue: 2

Cite

APA Mecit, E. D., & Alp, İ. (2010). Analitik hiyerarşi süreci ve veri zarflama analizi ile bir üniversitenin bölümlerinin etkinliğinin değerlendirilmesinde yeni bir model önerisi. Verimlilik Dergisi(2), 7-22.

23139       23140          29293

22408 Journal of Productivity is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)