Research Article
BibTex RIS Cite
Year 2023, Volume: 8 Issue: 2, 84 - 91, 30.08.2023
https://doi.org/10.31797/vetbio.1292170

Abstract

Project Number

2021/041

References

  • Ahmann, J., Steinhoff-Wagner, J., & Büscher, W. (2021). Determining immunoglobulin content of bovine colostrum and factors affecting the outcome: A review. Animals, 11(12), 3587. https://doi.org/10. 3390/ani11123587
  • Bartens, M., Drillich, M., Rychli, K., Iwersen, M., Arnholdt, T., Meyer, L., & Klein-Jöbstl, D. (2016). Assessment of different methods to estimate bovine colostrum quality on farm. New Zealand Veterinary Journal, 64(5), 263-267. https://doi.org/10.1080/ 00480169.2016.1184109
  • Baumrucker, C.R., Macrina, A.L., & Bruckmaier, R.M. (2022). Colostrogenesis: Role and Mechanism of the Bovine Fc Receptor of the Neonate (FcRn). Journal of Mammary Gland Biology and Neoplasia, 26, 419- 453. https://doi.org/10.1007/s10911-021-09506-2
  • Bielmann, V., Gillan, J., Perkins, N., Skidmore, A., Godden, S., & Leslie, K. (2010). An evaluation of Brix refractometry instruments for measurement of colostrum quality in dairy cattle. Journal of Dairy Science, 93(8), 3713-3721. https://doi.org/10.3168/jds. 2009-2943
  • Buczinski, S., & Vandeweerd, J. (2016). Diagnostic accuracy of refractometry for assessing bovine colostrum quality: A systematic review and metaanalysis. Journal of Dairy Science, 99(9), 7381-7394. https://doi.org/10.3168/jds.2016-10955
  • Chigerwe, M., & Hagey, J.V. (2014). Refractometer assessment of colostral and serum IgG and milk total solids concentrations in dairy cattle. BMC Veterinary Research, 10(1), 1-6. https://doi.org/10.1186/s12917- 014-0178-7
  • Conneely, M., Berry, D., Sayers, R., Murphy, J., Lorenz, I., Doherty, M., & Kennedy, E. (2013). Factors associated with the concentration of immunoglobulin G in the colostrum of dairy cows. Animal, 7(11), 1824-1832. https://doi.org/10.1017/ S1751731113001444
  • Crouch, C., Oliver, S., Hearle, D., Buckley, A., Chapman, A., & Francis, M. (2000). Lactogenic immunity following vaccination of cattle with bovine coronavirus. Vaccine, 19(2-3), 189-196. https://doi. org/10.1016/S0264-410X(00)00177-8
  • Fernando, R., Rindsig, R., & Spahr, S. (1982). Electrical conductivity of milk for detection of mastitis. Journal of Dairy Science, 65(4), 659-664. https://doi.org/10. 3168/jds.S0022-0302(82)82245-5
  • Fox, P.F., McSweeney, P.L., & Paul, L. (1998). Physical properties of milk. In, Dairy chemistry and biochemistry. 2nd ed., 321-343.
  • Furman-Fratczak, K., Rzasa, A., & Stefaniak, T. (2011). The influence of colostral immunoglobulin concentration in heifer calves’ serum on their health and growth. Journal of Dairy Science, 94(11), 5536- 5543. https://doi.org/10.3168/jds.2010-3253
  • Galfi, A., Radinović, M., Milanov, D., Boboš, S., Pajić, M., Savić, S., & Davidov, I. (2015). Electrical conductivity of milk and bacteriological findings in cows with subclinical mastitis. Biotechnology in Animal Husbandry, 31(4), 533-541. https://doi.org/10.2298/BAH1504533G
  • Gelsinger, S., Jones, C., & Heinrichs, A. (2015). Effect of colostrum heat treatment and bacterial population on immunoglobulin G absorption and health of neonatal calves. Journal of Dairy Science, 98(7), 4640-4645. https://doi.org/10.3168/jds.2014-8790
  • Godden, S.M., Lombard, J.E., & Woolums, A.R. (2019). Colostrum management for dairy calves. Veterinary Clinics: Food Animal Practice, 35(3), 535- 556. https://doi.org/10.1016/j.cvfa.2019.07.005
  • Gulliksen, S., Lie, K., Sølverød, L., & Østerås, O. (2008). Risk factors associated with colostrum quality in Norwegian dairy cows. Journal of Dairy Science, 91(2), 704-712. https://doi.org/10.3168/jds.2007-0450
  • Hare, K.S., Pletts, S., Pyo, J., Haines, D., Guan, L.L., & Steele, M. (2020). Feeding colostrum or a 1:1 colostrum:whole milk mixture for 3 days after birth increases serum immunoglobulin G and apparent immunoglobulin G persistency in Holstein bulls. Journal of Dairy Science, 103(12), 11833-11843. https://doi.org/10.3168/jds.2020-18558
  • Immler, M., Büttner, K., Gartner, T., Wehrend, A., & Donat, K. (2022). Maternal impact on serum immunoglobulin and total protein concentration in dairy calves. Animals, 12(6), 755. https://doi.org/10. 3390/ani12060755
  • Jaster, E. (2005). Evaluation of quality, quantity, and timing of colostrum feeding on immunoglobulin G1 absorption in Jersey calves. Journal of Dairy Science, 88(1), 296-302. https://doi.org/10.3168/jds.S0022- 0302(05)72687-4
  • Kara, E., & Ceylan, E. (2021). Failure of passive transfer in neonatal calves in dairy farms in Ankara region. Turkish Journal of Veterinary & Animal Sciences, 45(3), 556-565. https://doi.org/10.3906/vet-2011-26
  • Kessler, E.C., Bruckmaier, R.M., & Gross, J.J. (2020). Colostrum composition and immunoglobulin G content in dairy and dual-purpose cattle breeds. Journal of Animal Science, 98(8), 5542-5549. https:// doi.org/10.1093/jas/skaa237
  • Khatun, M., Bruckmaier, R., Thomson, P., House, J., & García, S. (2019). Suitability of somatic cell count, electrical conductivity, and lactate dehydrogenase activity in foremilk before versus after alveolar milk ejection for mastitis detection. Journal of Dairy Science, 102(10), 9200-9212. https://doi.org/10.3168/ jds.2018-15752
  • Kozheshkurt, V., Ivanov, I., Antonenko, Y., Katrich, V., Bozhkov, A., Gromovoy, T. (2021). Devising an express method for estimating the quality of colostrum and its components based on electrical conductivity. Eastern-European Journal of Enterprise Technologies, 1(11), 109. https://doi.org/10.15587/ 1729-4061.2021.225007
  • Kuczaj, M. (2001). Interrelations between year season and raw milk hygienic quality indices. Electronic Journal of Polish Agricultural Universities, 1(04), 1.
  • Martin, P., Vinet, A., Denis, C., Grohs, C., Chanteloup, L., Dozias, D., Maupetit, D., Sapa, J., Renand, G., & Blanc, F. (2021). Determination of immunoglobulin concentrations and genetic parameters for colostrum and calf serum in Charolais animals. Journal of Dairy Science, 104(3), 3240-3249. https://doi.org/10.3168/ jds.2020-19423
  • McGuirk SM, Collins M: Managing the production, storage, and delivery of colostrum. Veterinary Clinics: Food Animal Practice, 20(3), 593-603. https://doi.org/ 10.1016/j.cvfa.2004.06.005
  • McGrath, B.A., Fox, P.F., McSweeney P,L,H,. & Kelly, A.L. (2016). Composition and properties of bovine colostrum: A review. Dairy Science & Technology, 96(2), 133-158. https://doi.org/10.1007/s13594-015- 0258-x
  • Morrill, K., Robertson, K., Spring, M., Robinson, A., & Tyler, H. (2015). Validating a refractometer to evaluate immunoglobulin G concentration in Jersey colostrum and the effect of multiple freeze–thaw cycles on evaluating colostrum quality. Journal of Dairy Science, 98(1), 595-601. https://doi.org/10.3168/jds. 2014-8730
  • Morrill, K., Conrad, E., Polo, J., Lago, A., Campbell, J., Quigley, J., & Tyler, H. (2012). Estimate of colostral immunoglobulin G concentration using refractometry without or with caprylic acid fractionation. Journal of Dairy Science, 95(7), 3987- 3996. https://doi.org/10.3168/jds.2011-5104
  • Moore, M., Tyler, J.W., Chigerwe, M., Dawes, M.E., & Middleton, J.R. (2005). Effect of delayed colostrum collection on colostral IgG concentration in dairy cows. Journal of the American Veterinary Medicine Association, 226(8), 1375-1377. https://doi.org/10. 2460/javma.2005.226.1375
  • Navratilova, P., Janstova, B., Glossova, P., & Vorlova, L. (2006). Freezing point of heat-treated drinking milk in the Czech Republic. Czech Journal of Food Sciences, 24(4), 156. https://doi.org/10.17221/3313- CJFS
  • Norberg, E., Hogeveen, H., Korsgaard, I., Friggens, N., Sloth, K., & Løvendahl, P. (2004). Electrical conductivity of milk: Ability to predict mastitis status. Journal of Dairy Science, 87(4), 1099-1107. https://doi.org/10.3168/jds.S0022-0302(04)73256-7
  • Smolenski, G., Haines, S., Kwan, F.Y-S., Bond, J., Farr, V., Davis, S.R., Stelwagen, K., & Wheeler, T.T. (2007). Characterisation of host defence proteins in milk using a proteomic approach. Journal of Proteome Research, 6(1), 207-215. https://doi.org/10.1021/ pr0603405
  • Stelwagen, K., Carpenter, E., Haigh, B., Hodgkinson, A., & Wheeler, T. (2009). Immune components of bovine colostrum and milk. Journal of Animal Science, 87(13), 3-9. https://doi.org/10.2527/jas.2008-1377
  • Topal, O., Batmaz, H., Mecitoğlu, Z., & Uzabaci, E. (2018). Comparison of IgG and semiquantitative tests for evaluation of passive transfer immunity in calves. Turkish Journal of Veterinary & Animal Sciences, 42(4), 302-309. https://doi.org/10.3906/vet-1712-43
  • Turini, L., Conte, G., Bonelli, F., Sgorbini, M., Madrigali, A., & Mele, M. (2020). The relationship between colostrum quality, passive transfer of immunity and birth and weaning weight in neonatal calves. Livestock Science, 238, 104033. https://doi.org/ 10.1016/j.livsci.2020.104033
  • Walstra, P. (1999). Dairy technology: principles of milk properties and processes. IJDT, 60(2), 154-154.

Relationship between electrical conductivity and colostrum quality in farm level

Year 2023, Volume: 8 Issue: 2, 84 - 91, 30.08.2023
https://doi.org/10.31797/vetbio.1292170

Abstract

Good quality colostrum intake is essential component in calf health programs. There are different methods to determine the quality of colostrum. The aim of the present study is to investigate the relationship between Immunoglobulin G (IgG), which is used to determine colostrum quality, and electrical conductivity in farm level. Two groups were performed according to results of IgG analyses. Samples which had <50 mg/mL IgG concentration were assigned into group 1 (G1, n=27) and accepted as insufficient quality colostrum. Samples that had >50 mg/mL IgG concentration were accepted as good quality colostrum and assigned into group 2 (G2, n=68). IgG concentrations were measured by ELISA, then the electrical resistance (ER) and conductivity (EC) measured by Draminski Mastitis Detector (MDQ4, MDQ). MDQ and ER results were statistically higher in G2, and EC results were statistically higher in G1, but difference was not statistically significant (P>0.05) in G1, there was moderate positive correlation between IgG and ER, EC and MDQ (P<0.01). Presented study revealed strong correlation between EC and IgG concentration in low-quality colostrum. There are lots of variables that effect conductivity and resistance of colostrum, so to eliminate uncertainties of use of MDQ further research must be done. Moreover, MDQ readings show considerable potential for being useful tools in colostrum management systems to improve calf health in dairy farms.

Supporting Institution

Scientific Research Projects Coordination Unit of Kırıkkale University

Project Number

2021/041

References

  • Ahmann, J., Steinhoff-Wagner, J., & Büscher, W. (2021). Determining immunoglobulin content of bovine colostrum and factors affecting the outcome: A review. Animals, 11(12), 3587. https://doi.org/10. 3390/ani11123587
  • Bartens, M., Drillich, M., Rychli, K., Iwersen, M., Arnholdt, T., Meyer, L., & Klein-Jöbstl, D. (2016). Assessment of different methods to estimate bovine colostrum quality on farm. New Zealand Veterinary Journal, 64(5), 263-267. https://doi.org/10.1080/ 00480169.2016.1184109
  • Baumrucker, C.R., Macrina, A.L., & Bruckmaier, R.M. (2022). Colostrogenesis: Role and Mechanism of the Bovine Fc Receptor of the Neonate (FcRn). Journal of Mammary Gland Biology and Neoplasia, 26, 419- 453. https://doi.org/10.1007/s10911-021-09506-2
  • Bielmann, V., Gillan, J., Perkins, N., Skidmore, A., Godden, S., & Leslie, K. (2010). An evaluation of Brix refractometry instruments for measurement of colostrum quality in dairy cattle. Journal of Dairy Science, 93(8), 3713-3721. https://doi.org/10.3168/jds. 2009-2943
  • Buczinski, S., & Vandeweerd, J. (2016). Diagnostic accuracy of refractometry for assessing bovine colostrum quality: A systematic review and metaanalysis. Journal of Dairy Science, 99(9), 7381-7394. https://doi.org/10.3168/jds.2016-10955
  • Chigerwe, M., & Hagey, J.V. (2014). Refractometer assessment of colostral and serum IgG and milk total solids concentrations in dairy cattle. BMC Veterinary Research, 10(1), 1-6. https://doi.org/10.1186/s12917- 014-0178-7
  • Conneely, M., Berry, D., Sayers, R., Murphy, J., Lorenz, I., Doherty, M., & Kennedy, E. (2013). Factors associated with the concentration of immunoglobulin G in the colostrum of dairy cows. Animal, 7(11), 1824-1832. https://doi.org/10.1017/ S1751731113001444
  • Crouch, C., Oliver, S., Hearle, D., Buckley, A., Chapman, A., & Francis, M. (2000). Lactogenic immunity following vaccination of cattle with bovine coronavirus. Vaccine, 19(2-3), 189-196. https://doi. org/10.1016/S0264-410X(00)00177-8
  • Fernando, R., Rindsig, R., & Spahr, S. (1982). Electrical conductivity of milk for detection of mastitis. Journal of Dairy Science, 65(4), 659-664. https://doi.org/10. 3168/jds.S0022-0302(82)82245-5
  • Fox, P.F., McSweeney, P.L., & Paul, L. (1998). Physical properties of milk. In, Dairy chemistry and biochemistry. 2nd ed., 321-343.
  • Furman-Fratczak, K., Rzasa, A., & Stefaniak, T. (2011). The influence of colostral immunoglobulin concentration in heifer calves’ serum on their health and growth. Journal of Dairy Science, 94(11), 5536- 5543. https://doi.org/10.3168/jds.2010-3253
  • Galfi, A., Radinović, M., Milanov, D., Boboš, S., Pajić, M., Savić, S., & Davidov, I. (2015). Electrical conductivity of milk and bacteriological findings in cows with subclinical mastitis. Biotechnology in Animal Husbandry, 31(4), 533-541. https://doi.org/10.2298/BAH1504533G
  • Gelsinger, S., Jones, C., & Heinrichs, A. (2015). Effect of colostrum heat treatment and bacterial population on immunoglobulin G absorption and health of neonatal calves. Journal of Dairy Science, 98(7), 4640-4645. https://doi.org/10.3168/jds.2014-8790
  • Godden, S.M., Lombard, J.E., & Woolums, A.R. (2019). Colostrum management for dairy calves. Veterinary Clinics: Food Animal Practice, 35(3), 535- 556. https://doi.org/10.1016/j.cvfa.2019.07.005
  • Gulliksen, S., Lie, K., Sølverød, L., & Østerås, O. (2008). Risk factors associated with colostrum quality in Norwegian dairy cows. Journal of Dairy Science, 91(2), 704-712. https://doi.org/10.3168/jds.2007-0450
  • Hare, K.S., Pletts, S., Pyo, J., Haines, D., Guan, L.L., & Steele, M. (2020). Feeding colostrum or a 1:1 colostrum:whole milk mixture for 3 days after birth increases serum immunoglobulin G and apparent immunoglobulin G persistency in Holstein bulls. Journal of Dairy Science, 103(12), 11833-11843. https://doi.org/10.3168/jds.2020-18558
  • Immler, M., Büttner, K., Gartner, T., Wehrend, A., & Donat, K. (2022). Maternal impact on serum immunoglobulin and total protein concentration in dairy calves. Animals, 12(6), 755. https://doi.org/10. 3390/ani12060755
  • Jaster, E. (2005). Evaluation of quality, quantity, and timing of colostrum feeding on immunoglobulin G1 absorption in Jersey calves. Journal of Dairy Science, 88(1), 296-302. https://doi.org/10.3168/jds.S0022- 0302(05)72687-4
  • Kara, E., & Ceylan, E. (2021). Failure of passive transfer in neonatal calves in dairy farms in Ankara region. Turkish Journal of Veterinary & Animal Sciences, 45(3), 556-565. https://doi.org/10.3906/vet-2011-26
  • Kessler, E.C., Bruckmaier, R.M., & Gross, J.J. (2020). Colostrum composition and immunoglobulin G content in dairy and dual-purpose cattle breeds. Journal of Animal Science, 98(8), 5542-5549. https:// doi.org/10.1093/jas/skaa237
  • Khatun, M., Bruckmaier, R., Thomson, P., House, J., & García, S. (2019). Suitability of somatic cell count, electrical conductivity, and lactate dehydrogenase activity in foremilk before versus after alveolar milk ejection for mastitis detection. Journal of Dairy Science, 102(10), 9200-9212. https://doi.org/10.3168/ jds.2018-15752
  • Kozheshkurt, V., Ivanov, I., Antonenko, Y., Katrich, V., Bozhkov, A., Gromovoy, T. (2021). Devising an express method for estimating the quality of colostrum and its components based on electrical conductivity. Eastern-European Journal of Enterprise Technologies, 1(11), 109. https://doi.org/10.15587/ 1729-4061.2021.225007
  • Kuczaj, M. (2001). Interrelations between year season and raw milk hygienic quality indices. Electronic Journal of Polish Agricultural Universities, 1(04), 1.
  • Martin, P., Vinet, A., Denis, C., Grohs, C., Chanteloup, L., Dozias, D., Maupetit, D., Sapa, J., Renand, G., & Blanc, F. (2021). Determination of immunoglobulin concentrations and genetic parameters for colostrum and calf serum in Charolais animals. Journal of Dairy Science, 104(3), 3240-3249. https://doi.org/10.3168/ jds.2020-19423
  • McGuirk SM, Collins M: Managing the production, storage, and delivery of colostrum. Veterinary Clinics: Food Animal Practice, 20(3), 593-603. https://doi.org/ 10.1016/j.cvfa.2004.06.005
  • McGrath, B.A., Fox, P.F., McSweeney P,L,H,. & Kelly, A.L. (2016). Composition and properties of bovine colostrum: A review. Dairy Science & Technology, 96(2), 133-158. https://doi.org/10.1007/s13594-015- 0258-x
  • Morrill, K., Robertson, K., Spring, M., Robinson, A., & Tyler, H. (2015). Validating a refractometer to evaluate immunoglobulin G concentration in Jersey colostrum and the effect of multiple freeze–thaw cycles on evaluating colostrum quality. Journal of Dairy Science, 98(1), 595-601. https://doi.org/10.3168/jds. 2014-8730
  • Morrill, K., Conrad, E., Polo, J., Lago, A., Campbell, J., Quigley, J., & Tyler, H. (2012). Estimate of colostral immunoglobulin G concentration using refractometry without or with caprylic acid fractionation. Journal of Dairy Science, 95(7), 3987- 3996. https://doi.org/10.3168/jds.2011-5104
  • Moore, M., Tyler, J.W., Chigerwe, M., Dawes, M.E., & Middleton, J.R. (2005). Effect of delayed colostrum collection on colostral IgG concentration in dairy cows. Journal of the American Veterinary Medicine Association, 226(8), 1375-1377. https://doi.org/10. 2460/javma.2005.226.1375
  • Navratilova, P., Janstova, B., Glossova, P., & Vorlova, L. (2006). Freezing point of heat-treated drinking milk in the Czech Republic. Czech Journal of Food Sciences, 24(4), 156. https://doi.org/10.17221/3313- CJFS
  • Norberg, E., Hogeveen, H., Korsgaard, I., Friggens, N., Sloth, K., & Løvendahl, P. (2004). Electrical conductivity of milk: Ability to predict mastitis status. Journal of Dairy Science, 87(4), 1099-1107. https://doi.org/10.3168/jds.S0022-0302(04)73256-7
  • Smolenski, G., Haines, S., Kwan, F.Y-S., Bond, J., Farr, V., Davis, S.R., Stelwagen, K., & Wheeler, T.T. (2007). Characterisation of host defence proteins in milk using a proteomic approach. Journal of Proteome Research, 6(1), 207-215. https://doi.org/10.1021/ pr0603405
  • Stelwagen, K., Carpenter, E., Haigh, B., Hodgkinson, A., & Wheeler, T. (2009). Immune components of bovine colostrum and milk. Journal of Animal Science, 87(13), 3-9. https://doi.org/10.2527/jas.2008-1377
  • Topal, O., Batmaz, H., Mecitoğlu, Z., & Uzabaci, E. (2018). Comparison of IgG and semiquantitative tests for evaluation of passive transfer immunity in calves. Turkish Journal of Veterinary & Animal Sciences, 42(4), 302-309. https://doi.org/10.3906/vet-1712-43
  • Turini, L., Conte, G., Bonelli, F., Sgorbini, M., Madrigali, A., & Mele, M. (2020). The relationship between colostrum quality, passive transfer of immunity and birth and weaning weight in neonatal calves. Livestock Science, 238, 104033. https://doi.org/ 10.1016/j.livsci.2020.104033
  • Walstra, P. (1999). Dairy technology: principles of milk properties and processes. IJDT, 60(2), 154-154.
There are 36 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences
Journal Section Research Articles
Authors

Erdal Kara 0000-0001-7047-9502

İlknur Piryağcı 0000-0002-4470-8639

Buğrahan Bekir Yagcı 0000-0002-7473-3579

Ufuk Kaya 0000-0002-4805-0993

Taha Burak Elifoglu 0000-0002-2302-6321

Project Number 2021/041
Early Pub Date August 29, 2023
Publication Date August 30, 2023
Submission Date May 3, 2023
Acceptance Date July 11, 2023
Published in Issue Year 2023 Volume: 8 Issue: 2

Cite

APA Kara, E., Piryağcı, İ., Yagcı, B. B., Kaya, U., et al. (2023). Relationship between electrical conductivity and colostrum quality in farm level. Journal of Advances in VetBio Science and Techniques, 8(2), 84-91. https://doi.org/10.31797/vetbio.1292170

22563   CABI-Logo_NEW_accessible.jpg   logo_world_of_journals_no_margin.png  download download   download   download        download