Review
BibTex RIS Cite

AKUAKÜLTÜRDE ANTİBİYOTİK DİRENCİ VE BİYOFİLMİN ROLÜ

Year 2020, , 168 - 178, 30.12.2020
https://doi.org/10.38137/vetfarmatoksbulten.834364

Abstract

Gelişmekte olan su ürünleri endüstrisi hayvansal protein üretiminin önemli bir miktarını karşılamaktadır. Ancak nüfusun giderek artması, iklim değişikliği, çevresel bozulmalar ve özellikle hastalıklar üretimi etkilemekte, bu durum ise ülke ekonomisini makro düzeyde etkilemektedir. En sık karşılaşılan hastalık etmenleri Aeromonas spp., Vibrio spp.’dir. Dünya genelinde ve Türkiye’de balık hastalıklarını kontrol altına almak veya tedavi etmek amacıyla pek çok yöntem bulunmaktadır. Aşı uygulamaları büyük ölçüde kullanılırken aşılamanın yetersiz ve/veya yapılamadığı durumlarda antibiyotik kullanımı tedavide önemli bir rol oynamaktadır. Türkiye’de balık hastalıklarında kullanılmak üzere ruhsatlandırılmış antibiyotiklerden 15’ini florfenikol, 12’sini oksitetrasiklin, 9’unu sülfadiazin+trimetoprim, 2’sini enrofloksasin, ve 2’sini amoksisiklin oluşturmaktadır. Bu antibiyotik ilaçların akuakültürde uygun olmayan dozda, sürede, antibiyogram testi yapılmadan doğru olmayan kombinasyonların yapılması gibi çeşitli nedenlerden dolayı bakterilerin antibiyotiklere karşı direnç kazanması ve etkili antibiyotik sayısının yetersiz kalmasına yol açmaktadır. Bu durum ulusal ve uluslararası boyutta değerlendirildiğinde antibiyotik ilaçların etkisi oluşan direnç ile azalmakta, mortalite ve tedavi maliyetini arttırmakta, bu hem veteriner hem de beşeri sağlık alanında giderek artan küresel problemlere neden olmaktadır. Ayrıca antibiyotiklerin oral ilaçlı yem premiks şeklinde uygulanması kalıntıların farklı yerlere dağılmasına, çevreye ve diğer canlılara ulaşmasına yol açmakta ve bu da beraberinde antibiyotik direncinin yayılmasına sebep olmaktadır. Planktonik bakteriler önlemede kullanılan antibiyotiklerin minimum inhibitör konsantrasyonları (MİK) biyofilmleri önlemek, inhibe etmek, azaltmak veya ortadan kaldırmak için gereken değerlerle örtüşmemektedir. Bu durum biyofilm formundaki bakterilerin ilaca çok daha dirençli olması sebebiyle başarısızlığa neden olmaktadır. Yapılan bu derleme ile bakterilerin biyofilm formlarının artan antibiyotik direnci konusundaki rolü ve buna neden olan mekanizmaları özellikle Türkiye’de gelişmekte olan akuakültür açısından değerlendirilmeye çalışılmıştır.

References

  • Allcock, S., Young, E. H., Holmes, M., Gurdasani, D., Dougan, G., Sandhu, M. S.,Török, M. E. (2017). Antimicrobial resistance in human populations: challenges and opportunities. Global Health, Epidemiology and Genomics, 2.
  • Allison, K. R., Brynildsen, M. P., Collins, J. J. (2011). Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature, 473(7346), 216-220.
  • Arunkumar, M., LewisOscar, F., Thajuddin, N., Pugazhendhi, A.,Nithya, C. (2020). In vitro and in vivo biofilm forming Vibrio sp: A significant threat in aquaculture. Process Biochemistry. 94: 213-223.
  • Asha, A., D.K. Nayak, K.M. Shankar, and C.V. Mohan. 2004. Antigenic expression in biofilm cells of Aeromonas hydrophila employed in oral vaccination of fish. Fish,Shellfish Immunology 16:429–436.
  • Azad, I.S., K.M. Shankar, C.V. Mohan, and B. Kalita. 1999. Biofilm vaccine of Aeromonas hydrophila – standardization of dose and duration for orla vaccination of carps. Fish Shellfish Immunology 9:519-528.
  • Barnett, T. C., Kirov, S. M., Strom, M. S., Sanderson, K. (1997). Aeromonas spp. possess at least two distinct type IV pilus families. Microbial pathogenesis, 23(4), 241-247.
  • Basson, A., Flemming, L. A.,Chenia, H. Y. (2008). Evaluation of adherence, hydrophobicity, aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates. Microbial ecology, 55(1), 1-14.
  • Baydan, E., Yurdakök, B., Aydın, F. G. (2012). Balıklarda antibiyotik kullanımı. Türkiye Klinikleri Veteriner Bilimleri Dergisi, 3(3), 45-52.
  • Behlau, I.,Gilmore, M. S. (2008). Microbial biofilms in ophthalmology and infectious disease. Archives of Ophthalmology, 126(11), 1572-1581.
  • Borges, A., Simões, M. (2019). Quorum sensing inhibition by marine bacteria. Marine drugs, 17(7), 427.
  • BSGM, (2020) T.C Tarım ve Orman Bakanlığı. Balıkçılık ve Su Ürünleri Genel Müdürlüğü İstatistik ve Bilgi Genel Daire Başkanlığı. Erişim adresi: [https://www.tarimorman.gov.tr/BSGM] Erişim tarihi:[25.07.2020].
  • Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental microbiology, 8(7), 1137-1144.
  • Da, S. R., Ploy, M. C. (2012). Resistance acquisition via the bacterial SOS response: the inducive role of antibiotics. Medecine sciences: M/S, 28(2), 179-184.
  • Das, P, Horton, R. (2016). Antibiotics: achieving the balance between access and excess. The Lancet, 387(10014), 102-104.
  • Desbois, A. P., Cook, K. J., Buba, E. (2020). Antibiotics modulate biofilm formation in fish pathogenic isolates of atypical Aeromonas salmonicida. Journal of Fish Diseases, 43(11), 1373-1379.
  • Dogruoz, N., D. Goksay, E. IIhan-Sungun, and A. Cotuk. 2009. Pioneer colonizer microorganisms in biofilm formation on galvanized steel in a stimulated reciurculating cooling- water system. Journal of Basic Microbiology 49: S5-S12.
  • Duman, M (2017). Gökkuşağı alabalıklarında görülen Motil aeromonas (Aeromonas hydrophila, A. sobria, A. caviae), Yersinia ruckeri ve Lactococcus garvieae bakterilerinin antimikrobiyal duyarlılıkları ve duyarlılıkta rol oynayan genlerin tespiti. Doktora Tezi, Uludağ Üniversitesi, Sağlık Bilimleri Enstitüsü, Su Ürünleri Hastalıkları Anabilim Dalı
  • Elliott, D., Burns, J. L., Hoffman, L. R. (2010). Exploratory study of the prevalence and clinical significance of tobramycin-mediated biofilm induction in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrobial agents and chemotherapy, 54(7), 3024-3026.
  • Evans, D. J., Allison, D. G., Brown, M. R. W., Gilbert, P. (1990). Effect of growth-rate on resistance of gram-negative biofilms to cetrimide. Journal of Antimicrobial Chemotherapy, 26(4), 473-478.
  • FAO., (2020). Food and Agriculture Organization of the United Nations.The State Of World
  • FEAP., (2017). Federation of European Aquaculture Producers Annual Report. Erişim adresi:[ https://issuu.com/feapsec/docs/feap_ar2017] Erişim tarihi: 15.08.2020
  • Fisheries And Aquaculture. Erişim adresi:[ http://www.fao.org/3/ca9229en/ca9229en.pdf] Erişim tarihi: 12.08.2020.
  • Gavin, R., S. Merino, M. Altarriba, R. Canals, J.G. Shaw, and J.M Tomas. 2003. Latral flagella are required for increased cell adherence, invasion and biofilm formation by Aeromonas spp. FEMS Microbiology Letters 224: 77-83. GKGM, (2020). T.C. Tarım ve Orman Bakanlığı, Gıda ve Kontrol Genel Müdürlüğü. Erişim adresi:[ https://www.tarimorman.gov.tr/GKGM]. Erişim tarihi: 12.07.2020.
  • Guyard-Nicodème, M., Bazire, A., Hémery, G., Meylheuc, T., Mollé, D., Orange, N., Chevalier, S. (2008). Outer membrane modifications of Pseudomonas fluorescens MF37 in response to hyperosmolarity. Journal of proteome research, 7(3), 1218-1225.
  • Hengzhuang, W., Ciofu, O., Yang, L., Wu, H., Song, Z., Oliver, A., Høiby, N. (2013). High β-lactamase levels change the pharmacodynamics of β-lactam antibiotics in Pseudomonas aeruginosa biofilms. Antimicrobial agents and chemotherapy, 57(1), 196-204.
  • Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. International journal of antimicrobial agents, 35(4), 322-332.
  • Husain, F. M., Ahmad, I., Khan, M. S., Ahmad, E., Tahseen, Q., Khan, M. S., Alshabib, N. A. (2015). Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria. Frontiers in microbiology, 6, 420.
  • Jolivet-Gougeon, A., Bonnaure-Mallet, M. (2014). Biofilms as a mechanism of bacterial resistance. Drug Discovery Today: Technologies, 11, 49-56.
  • Kirov, S.M.,Sanderson,K. (1996). Characterization of a type IV bundle-forming pilus (SFP) from a gastroenteritis-associated strain of Aeromonas veronii biovar sobria Microb. Pathog., 21(1): 23-34.
  • Kostakioti, M., Hadjifrangiskou, M., Hultgren, S. J. (2013). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor perspectives in medicine, 3(4), a010306.
  • Lazãr, V., Chifiriuc, M. C. (2010). Architecture and physiology of microbial biofilms. Roum Arch Microbiol Immunol, 69(2), 95-107.
  • Lewbart, G. A. (2001, January). Bacteria and ornamental fish. In Seminars in Avian and Exotic Pet Medicine (Vol. 10, No. 1, pp. 48-56). WB Saunders.
  • Li, T., Sun, X., Chen, H., He, B., Mei, Y., Wang, D., Li, J. (2020). Methyl anthranilate: a novel quorum sensing inhibitor and anti-biofilm agent against Aeromonas sobria. Food microbiology, 86, 103356.
  • Lulijwa, R., Rupia, E. J., Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663.
  • Macia, M. D., Rojo-Molinero, E., Oliver, A. (2014). Antimicrobial susceptibility testing in biofilm-growing bacteria. Clinical Microbiology and Infection, 20(10), 981-990.
  • Merino, S., R. Gavin, M. Altarriba, L. Izquierdo, M.E. Maguire, and J.M. Tomas. 2001. The MgtE Mg2+ transport protein is involved in Aeromonas hydrophila adherence. FEMS Microbiology Letters 198: 189195.
  • Miranda, C. D., Zemelman, R. (2002). Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture, 212(1-4), 31-47.
  • Moori Bakhtiari, N., Tulabi, Z., Alishahi, M. (2019). Biofilm-Producing Ability and Antibiotic Resistance Pattern of Pathogenic Strains of Aeromonas hydrophila. Jundishapur Journal of Microbiology, 12(12).
  • Nawaz, M., Khan, S. A., Khan, A. A., Sung, K., Tran, Q., Kerdahi, K., Steele, R. (2010).Detection and characterization of virulence genes and integrons in Aeromonas veronii isolated from catfish. Food microbiology, 27(3), 327-331.
  • Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C., Clay, J., Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405(6790), 1017-1024.
  • Naylor, R., Burke, M. (2005). Aquaculture and ocean resources: raising tigers of the sea. Annual Review of Environment and Resources, 30.
  • Papa, R., Artini, M., Cellini, A., Tilotta, M., Galano, E., Pucci, P., Selan, L. (2013). A new anti-infective strategy to reduce the spreading of antibiotic resistance by the action on adhesion-mediated virulence factors in Staphylococcus aureus. Microbial pathogenesis, 63, 44-53.
  • Patel, T. S., Nagel, J. L. (2015). Clinical outcomes of Enterobacteriaceae infections stratified by carbapenem MICs. Journal of clinical microbiology, 53(1), 201-205.
  • Poobalane, S., Thompson, K. D., Ardó, L., Verjan, N., Han, H. J., Jeney, G., Adams, A. (2010). Production and efficacy of an Aeromonas hydrophila recombinant S-layer protein vaccine for fish. Vaccine, 28(20), 3540-3547.
  • Pridgeon, J. W., Klesius, P. H. (2011). Molecular identification and virulence of three Aeromonas hydrophila isolates cultured from infected channel catfish during a disease outbreak in west Alabama (USA) in 2009. Diseases of aquatic organisms, 94(3), 249-253.
  • Schaible, B., Taylor, C. T., Schaffer, K. (2012). Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrobial agents and chemotherapy, 56(4), 2114-2118.
  • Seyfried, E. E., Newton, R. J., Rubert, K. F., Pedersen, J. A., McMahon, K. D. (2010). Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline. Microbial ecology, 59(4), 799-807.
  • Sharma, D., Misba, L., Khan, A. U. (2019). Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance & Infection Control, 8(1), 1-10.
  • Silver, A.C, Graf, J. (2009). Prevalence of genes encoding the type three secretion system and the effectors AexT and AexU in the Aeromonas veronii group. DNA and cell biology, 28(8), 383-388. Singh, B. R., Shoeb, M., Sharma, S., Naqvi, A. H., Gupta, V. K., Singh, B. N. (2017). Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Frontiers in Cellular and Infection Microbiology, 7, 93.
  • Sørum, H. (2005). Antimicrobial drug resistance in fish pathogens. Antimicrobial resistance in bacteria of animal origin, 213-238.
  • Subasinghe, R. P. (2005). Epidemiological approach to aquatic animal health management: opportunities and challenges for developing countries to increase aquatic production through aquaculture. Preventive veterinary medicine, 67(2-3), 117-124.
  • TAGEM, (2019). T.C Tarım ve Orman Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü.Su Ürünleri Sektör Politika Belgesi 2019-2023.Erişim adresi:[https://www.tarimorman.gov.tr/TAGEM/Belgeler/yayin/Su%20%C3%9Cr%C3%BCnleri%20Sekt%C3%B6r%20Politika%20Belgesi%202019-2023.pdf]. Erişim tarihi: 12.08.2020.
  • TEPAV., (2017) Türkiye’de Antimikrobiyal direnç : Ekonomik Değerlendirme ve Öneriler. Erişim adresi:[ https://www.tepav.org.tr/tr/haberler/s/4251] Erişim tarihi: 15.07.2020
  • Tezel,R. (2015). Milas Bölgesindeki Toprak Havuz İşletmelerinin Mevcut Durum Analizinin Yapılması ve Sürdürülebilirlikleri İçin Çözüm Önerilerinin Geliştirilmesi. Yüksek Lisans Tezi. Muğla Sıtkı Koçman Üniversitesi, Muğla.
  • Thieme, L., Hartung, A., Tramm, K., Klinger-Strobel, M., Jandt, K. D., Makarewicz, O., Pletz, M. W. (2019). MBEC Versus MBIC: the Lack of Differentiation between Biofilm Reducing and Inhibitory Effects as a Current Problem in Biofilm Methodology. Biological procedures online, 21(1), 18.
  • TÜİK. (2020). Su ürünleri istatistikleri. TÜİK. Erişim adresi:[https://www.tarimorman.gov.tr/sgb/Belgeler/SagMenuVeriler/BSGM.pdf]. Erişim tarihi: 12.08.2020.
  • Vu, B., Chen, M., Crawford, R. J.Ivanova, E. P. (2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 14(7), 2535-2554.
  • Yalınkılınç, HS, Kum, C (2016). Balık Hastalıklarında Aşı Kullanımı. Turkiye Klinikleri J Vet Sci Pharmacol Toxicol-Special Topics, 2(1), 38-46.
  • Zdanowicz, M., Mudryk, Z. J., Perliński, P. (2020). Abundance and antibiotic resistance of Aeromonas isolated from the water of three carp ponds. Veterinary Research Communications, 44(1), 9-18. Zhu, W., Zhou, S., Chu, W. (2020). Comparative proteomic analysis of sensitive and multi-drug resistant Aeromonas hydrophila isolated from diseased fish. Microbial Pathogenesis, 139, 103930.
  • Zrnčić, S., Oraić, D., Zupičić, I. G., Pavlinec, Ž., Brnić, D., Rogić, Ž. A., Adamek, M. (2020). Koi herpesvirus and carp edema virus threaten common carp aquaculture in Croatia. Journal of Fish Diseases, 43(6), 673-685.

ANTIBIOTIC RESISTANCE IN AQUACULTURE AND THE ROLE OF BIOFILMS

Year 2020, , 168 - 178, 30.12.2020
https://doi.org/10.38137/vetfarmatoksbulten.834364

Abstract

Aquaculture industry is a rising industry, fills important amounts of animal protein production. However, climate change, ecological disruption, population increase and especially diseases are affecting the national economy on a macro scale. Most commonly encountered disease agents are: Aeromonas spp., Vibrio spp. There are many methods to control and treat for aquatic diseases in the World and Turkey. While vaccination programs are used regularly, in case it can’t be applied appropriately or not at all, antibiotics still plays an important role in treatment. In Turkey, antibiotics are licenced for finfish: 15 of florfenicol, 12 oxytetracycline, 9 sulfadiazine + trimethoprim, 2 enrofloxacin and 2 amoxicillin. Due to usage of those antibiotics with the wrong dosage, time of use, without an antibiogram test and usage of the wrong combination of drugs leads to bacterial antimicrobial resistance and the insufficient number of effective drugs to be used. While considering this situation on a national and international scale; with increased antimicrobial resistance, effects of antibiotics are reduced, increase of mortality and cost of treatment creates increasing global problems not just animal but also human health. Use of antibiotics as oral and premixes, increases residues in various places, making it easier to reach the aquatic environment and other animals thus increasing antimicrobial resistance even further. Minimum inhibitor concentration (MIC) of antibiotics used against planktonic bacteria does not match the value to prevent, inhibit, reduce or eradicate biofilm produced by them In this review, role of biofilm bacteria in increased antimicrobial resistance and mechanisms affecting that are evaluated considering growing aquaculture industry, especially in Turkey.

References

  • Allcock, S., Young, E. H., Holmes, M., Gurdasani, D., Dougan, G., Sandhu, M. S.,Török, M. E. (2017). Antimicrobial resistance in human populations: challenges and opportunities. Global Health, Epidemiology and Genomics, 2.
  • Allison, K. R., Brynildsen, M. P., Collins, J. J. (2011). Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature, 473(7346), 216-220.
  • Arunkumar, M., LewisOscar, F., Thajuddin, N., Pugazhendhi, A.,Nithya, C. (2020). In vitro and in vivo biofilm forming Vibrio sp: A significant threat in aquaculture. Process Biochemistry. 94: 213-223.
  • Asha, A., D.K. Nayak, K.M. Shankar, and C.V. Mohan. 2004. Antigenic expression in biofilm cells of Aeromonas hydrophila employed in oral vaccination of fish. Fish,Shellfish Immunology 16:429–436.
  • Azad, I.S., K.M. Shankar, C.V. Mohan, and B. Kalita. 1999. Biofilm vaccine of Aeromonas hydrophila – standardization of dose and duration for orla vaccination of carps. Fish Shellfish Immunology 9:519-528.
  • Barnett, T. C., Kirov, S. M., Strom, M. S., Sanderson, K. (1997). Aeromonas spp. possess at least two distinct type IV pilus families. Microbial pathogenesis, 23(4), 241-247.
  • Basson, A., Flemming, L. A.,Chenia, H. Y. (2008). Evaluation of adherence, hydrophobicity, aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates. Microbial ecology, 55(1), 1-14.
  • Baydan, E., Yurdakök, B., Aydın, F. G. (2012). Balıklarda antibiyotik kullanımı. Türkiye Klinikleri Veteriner Bilimleri Dergisi, 3(3), 45-52.
  • Behlau, I.,Gilmore, M. S. (2008). Microbial biofilms in ophthalmology and infectious disease. Archives of Ophthalmology, 126(11), 1572-1581.
  • Borges, A., Simões, M. (2019). Quorum sensing inhibition by marine bacteria. Marine drugs, 17(7), 427.
  • BSGM, (2020) T.C Tarım ve Orman Bakanlığı. Balıkçılık ve Su Ürünleri Genel Müdürlüğü İstatistik ve Bilgi Genel Daire Başkanlığı. Erişim adresi: [https://www.tarimorman.gov.tr/BSGM] Erişim tarihi:[25.07.2020].
  • Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental microbiology, 8(7), 1137-1144.
  • Da, S. R., Ploy, M. C. (2012). Resistance acquisition via the bacterial SOS response: the inducive role of antibiotics. Medecine sciences: M/S, 28(2), 179-184.
  • Das, P, Horton, R. (2016). Antibiotics: achieving the balance between access and excess. The Lancet, 387(10014), 102-104.
  • Desbois, A. P., Cook, K. J., Buba, E. (2020). Antibiotics modulate biofilm formation in fish pathogenic isolates of atypical Aeromonas salmonicida. Journal of Fish Diseases, 43(11), 1373-1379.
  • Dogruoz, N., D. Goksay, E. IIhan-Sungun, and A. Cotuk. 2009. Pioneer colonizer microorganisms in biofilm formation on galvanized steel in a stimulated reciurculating cooling- water system. Journal of Basic Microbiology 49: S5-S12.
  • Duman, M (2017). Gökkuşağı alabalıklarında görülen Motil aeromonas (Aeromonas hydrophila, A. sobria, A. caviae), Yersinia ruckeri ve Lactococcus garvieae bakterilerinin antimikrobiyal duyarlılıkları ve duyarlılıkta rol oynayan genlerin tespiti. Doktora Tezi, Uludağ Üniversitesi, Sağlık Bilimleri Enstitüsü, Su Ürünleri Hastalıkları Anabilim Dalı
  • Elliott, D., Burns, J. L., Hoffman, L. R. (2010). Exploratory study of the prevalence and clinical significance of tobramycin-mediated biofilm induction in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrobial agents and chemotherapy, 54(7), 3024-3026.
  • Evans, D. J., Allison, D. G., Brown, M. R. W., Gilbert, P. (1990). Effect of growth-rate on resistance of gram-negative biofilms to cetrimide. Journal of Antimicrobial Chemotherapy, 26(4), 473-478.
  • FAO., (2020). Food and Agriculture Organization of the United Nations.The State Of World
  • FEAP., (2017). Federation of European Aquaculture Producers Annual Report. Erişim adresi:[ https://issuu.com/feapsec/docs/feap_ar2017] Erişim tarihi: 15.08.2020
  • Fisheries And Aquaculture. Erişim adresi:[ http://www.fao.org/3/ca9229en/ca9229en.pdf] Erişim tarihi: 12.08.2020.
  • Gavin, R., S. Merino, M. Altarriba, R. Canals, J.G. Shaw, and J.M Tomas. 2003. Latral flagella are required for increased cell adherence, invasion and biofilm formation by Aeromonas spp. FEMS Microbiology Letters 224: 77-83. GKGM, (2020). T.C. Tarım ve Orman Bakanlığı, Gıda ve Kontrol Genel Müdürlüğü. Erişim adresi:[ https://www.tarimorman.gov.tr/GKGM]. Erişim tarihi: 12.07.2020.
  • Guyard-Nicodème, M., Bazire, A., Hémery, G., Meylheuc, T., Mollé, D., Orange, N., Chevalier, S. (2008). Outer membrane modifications of Pseudomonas fluorescens MF37 in response to hyperosmolarity. Journal of proteome research, 7(3), 1218-1225.
  • Hengzhuang, W., Ciofu, O., Yang, L., Wu, H., Song, Z., Oliver, A., Høiby, N. (2013). High β-lactamase levels change the pharmacodynamics of β-lactam antibiotics in Pseudomonas aeruginosa biofilms. Antimicrobial agents and chemotherapy, 57(1), 196-204.
  • Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. International journal of antimicrobial agents, 35(4), 322-332.
  • Husain, F. M., Ahmad, I., Khan, M. S., Ahmad, E., Tahseen, Q., Khan, M. S., Alshabib, N. A. (2015). Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria. Frontiers in microbiology, 6, 420.
  • Jolivet-Gougeon, A., Bonnaure-Mallet, M. (2014). Biofilms as a mechanism of bacterial resistance. Drug Discovery Today: Technologies, 11, 49-56.
  • Kirov, S.M.,Sanderson,K. (1996). Characterization of a type IV bundle-forming pilus (SFP) from a gastroenteritis-associated strain of Aeromonas veronii biovar sobria Microb. Pathog., 21(1): 23-34.
  • Kostakioti, M., Hadjifrangiskou, M., Hultgren, S. J. (2013). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor perspectives in medicine, 3(4), a010306.
  • Lazãr, V., Chifiriuc, M. C. (2010). Architecture and physiology of microbial biofilms. Roum Arch Microbiol Immunol, 69(2), 95-107.
  • Lewbart, G. A. (2001, January). Bacteria and ornamental fish. In Seminars in Avian and Exotic Pet Medicine (Vol. 10, No. 1, pp. 48-56). WB Saunders.
  • Li, T., Sun, X., Chen, H., He, B., Mei, Y., Wang, D., Li, J. (2020). Methyl anthranilate: a novel quorum sensing inhibitor and anti-biofilm agent against Aeromonas sobria. Food microbiology, 86, 103356.
  • Lulijwa, R., Rupia, E. J., Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663.
  • Macia, M. D., Rojo-Molinero, E., Oliver, A. (2014). Antimicrobial susceptibility testing in biofilm-growing bacteria. Clinical Microbiology and Infection, 20(10), 981-990.
  • Merino, S., R. Gavin, M. Altarriba, L. Izquierdo, M.E. Maguire, and J.M. Tomas. 2001. The MgtE Mg2+ transport protein is involved in Aeromonas hydrophila adherence. FEMS Microbiology Letters 198: 189195.
  • Miranda, C. D., Zemelman, R. (2002). Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture, 212(1-4), 31-47.
  • Moori Bakhtiari, N., Tulabi, Z., Alishahi, M. (2019). Biofilm-Producing Ability and Antibiotic Resistance Pattern of Pathogenic Strains of Aeromonas hydrophila. Jundishapur Journal of Microbiology, 12(12).
  • Nawaz, M., Khan, S. A., Khan, A. A., Sung, K., Tran, Q., Kerdahi, K., Steele, R. (2010).Detection and characterization of virulence genes and integrons in Aeromonas veronii isolated from catfish. Food microbiology, 27(3), 327-331.
  • Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C., Clay, J., Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405(6790), 1017-1024.
  • Naylor, R., Burke, M. (2005). Aquaculture and ocean resources: raising tigers of the sea. Annual Review of Environment and Resources, 30.
  • Papa, R., Artini, M., Cellini, A., Tilotta, M., Galano, E., Pucci, P., Selan, L. (2013). A new anti-infective strategy to reduce the spreading of antibiotic resistance by the action on adhesion-mediated virulence factors in Staphylococcus aureus. Microbial pathogenesis, 63, 44-53.
  • Patel, T. S., Nagel, J. L. (2015). Clinical outcomes of Enterobacteriaceae infections stratified by carbapenem MICs. Journal of clinical microbiology, 53(1), 201-205.
  • Poobalane, S., Thompson, K. D., Ardó, L., Verjan, N., Han, H. J., Jeney, G., Adams, A. (2010). Production and efficacy of an Aeromonas hydrophila recombinant S-layer protein vaccine for fish. Vaccine, 28(20), 3540-3547.
  • Pridgeon, J. W., Klesius, P. H. (2011). Molecular identification and virulence of three Aeromonas hydrophila isolates cultured from infected channel catfish during a disease outbreak in west Alabama (USA) in 2009. Diseases of aquatic organisms, 94(3), 249-253.
  • Schaible, B., Taylor, C. T., Schaffer, K. (2012). Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrobial agents and chemotherapy, 56(4), 2114-2118.
  • Seyfried, E. E., Newton, R. J., Rubert, K. F., Pedersen, J. A., McMahon, K. D. (2010). Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline. Microbial ecology, 59(4), 799-807.
  • Sharma, D., Misba, L., Khan, A. U. (2019). Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance & Infection Control, 8(1), 1-10.
  • Silver, A.C, Graf, J. (2009). Prevalence of genes encoding the type three secretion system and the effectors AexT and AexU in the Aeromonas veronii group. DNA and cell biology, 28(8), 383-388. Singh, B. R., Shoeb, M., Sharma, S., Naqvi, A. H., Gupta, V. K., Singh, B. N. (2017). Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Frontiers in Cellular and Infection Microbiology, 7, 93.
  • Sørum, H. (2005). Antimicrobial drug resistance in fish pathogens. Antimicrobial resistance in bacteria of animal origin, 213-238.
  • Subasinghe, R. P. (2005). Epidemiological approach to aquatic animal health management: opportunities and challenges for developing countries to increase aquatic production through aquaculture. Preventive veterinary medicine, 67(2-3), 117-124.
  • TAGEM, (2019). T.C Tarım ve Orman Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü.Su Ürünleri Sektör Politika Belgesi 2019-2023.Erişim adresi:[https://www.tarimorman.gov.tr/TAGEM/Belgeler/yayin/Su%20%C3%9Cr%C3%BCnleri%20Sekt%C3%B6r%20Politika%20Belgesi%202019-2023.pdf]. Erişim tarihi: 12.08.2020.
  • TEPAV., (2017) Türkiye’de Antimikrobiyal direnç : Ekonomik Değerlendirme ve Öneriler. Erişim adresi:[ https://www.tepav.org.tr/tr/haberler/s/4251] Erişim tarihi: 15.07.2020
  • Tezel,R. (2015). Milas Bölgesindeki Toprak Havuz İşletmelerinin Mevcut Durum Analizinin Yapılması ve Sürdürülebilirlikleri İçin Çözüm Önerilerinin Geliştirilmesi. Yüksek Lisans Tezi. Muğla Sıtkı Koçman Üniversitesi, Muğla.
  • Thieme, L., Hartung, A., Tramm, K., Klinger-Strobel, M., Jandt, K. D., Makarewicz, O., Pletz, M. W. (2019). MBEC Versus MBIC: the Lack of Differentiation between Biofilm Reducing and Inhibitory Effects as a Current Problem in Biofilm Methodology. Biological procedures online, 21(1), 18.
  • TÜİK. (2020). Su ürünleri istatistikleri. TÜİK. Erişim adresi:[https://www.tarimorman.gov.tr/sgb/Belgeler/SagMenuVeriler/BSGM.pdf]. Erişim tarihi: 12.08.2020.
  • Vu, B., Chen, M., Crawford, R. J.Ivanova, E. P. (2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 14(7), 2535-2554.
  • Yalınkılınç, HS, Kum, C (2016). Balık Hastalıklarında Aşı Kullanımı. Turkiye Klinikleri J Vet Sci Pharmacol Toxicol-Special Topics, 2(1), 38-46.
  • Zdanowicz, M., Mudryk, Z. J., Perliński, P. (2020). Abundance and antibiotic resistance of Aeromonas isolated from the water of three carp ponds. Veterinary Research Communications, 44(1), 9-18. Zhu, W., Zhou, S., Chu, W. (2020). Comparative proteomic analysis of sensitive and multi-drug resistant Aeromonas hydrophila isolated from diseased fish. Microbial Pathogenesis, 139, 103930.
  • Zrnčić, S., Oraić, D., Zupičić, I. G., Pavlinec, Ž., Brnić, D., Rogić, Ž. A., Adamek, M. (2020). Koi herpesvirus and carp edema virus threaten common carp aquaculture in Croatia. Journal of Fish Diseases, 43(6), 673-685.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Sciences
Journal Section Review
Authors

Sultan Ayıkol This is me 0000-0002-0512-2918

Furkan Kutlu This is me 0000-0003-0310-2590

Onur Dincer This is me 0000-0002-3055-1458

Farah Gonul Aydın 0000-0002-0068-2078

Publication Date December 30, 2020
Acceptance Date December 30, 2020
Published in Issue Year 2020

Cite

APA Ayıkol, S., Kutlu, F., Dincer, O., Aydın, F. G. (2020). AKUAKÜLTÜRDE ANTİBİYOTİK DİRENCİ VE BİYOFİLMİN ROLÜ. Veteriner Farmakoloji Ve Toksikoloji Derneği Bülteni, 11(3), 168-178. https://doi.org/10.38137/vetfarmatoksbulten.834364