Review
BibTex RIS Cite

SU KAYNAKLARINDA MİKROPLASTİKLERİN VARLIĞI VE İNSAN SAĞLIĞI AÇISINDAN ÖNEMİ

Year 2021, , 79 - 88, 11.09.2021
https://doi.org/10.38137/vftd.922677

Abstract

Dünya genelinde plastik kullanımı yılda 300 milyon tonun üzerindedir. Üretilen plastiğin büyük bir kısmı, fiziko-kimyasal işlemlerle daha küçük partiküllere parçalanırlar. Standart bir tanımı olmamakla birlikte genellikle mikroplastikler 5 mm'den küçük ancak 1 µm veya 100 nm'den büyük plastik partiküller olarak kabul edilir. Ortamdaki mikroplastikler, eklendikleri kişisel temizlik ürünleri (örneğin güneş kremleri ve diğer kozmetik ürünler) ile endüstriyel ürünlerin (boyalı yüzeyler, lastikler ve sentetik kumaşların) parçalanması sonucu meydana gelebilmektedir. Bu çeşitli kaynaklar, doğal çevrenin mikroplastiklerle yaygın şekilde kirlenmesine yol açmıştır. Plastiklerin ayrım gözetmeksizin kullanımı ve atıklarının yetersiz bertarafı küresel düzeyde ekosistemde ciddi endişelere yol açmaktadır. Mikroplastik kirliliğin yaygınlaşması canlı organizmalar üzerindeki zararlı etkilerine dair endişeleri de arttırmaktadır. Mikroplastikler son zamanlarda içme suyunda ve içme suyu kaynaklarında tespit edilmiştir. Bununla birlikte, mikroplastikler için standart örnekleme, ekstraksiyon ve tanımlama yöntemleri olmadığından içme suyundaki varlığına yönelik araştırmalar sınırlıdır. Bilimsel kanıtlar, mikroplastiklere maruziyet sonucu çeşitli hücre ve organlarda toksik etkiler, beslenmenin bozulmasından üreme sisteminde yan etkilere, karaciğer fizyolojisinde olumsuz değişimlere, enerji metabolizması bozulmalarına kadar çeşitli etkilere neden olduğunu ortaya koymaktadır. Mikroplastiklerin insan sağlığı üzerindeki riskleri değerlendirildiğinde içme suyunda oluşumu hakkında daha fazla araştırmaya ihtiyaç duyulmaktadır. Ayrıca, mikroplastiklerin potansiyel kaynaklarının azaltılması, atıksu arıtma teknolojileri ve atık yönetimi bakımından yasal düzenlemeler önem arz etmektedir.

References

  • Adams, JD., Kim, U., & Soh, HT. (2008). Multitarget magnetic activated cell sorter. Proceedings of the National Academy of Sciences, 105(47), 18165-18170.
  • Adan, A., Alizada, G., Kiraz, Y., Baran, Y., & Nalbant, A. (2017). Flow cytometry: basic principles and applications. Critical reviews in biotechnology, 37(2), 163-176.
  • Alcayaga-Miranda, F., Cuenca, J., Martin, A., Contreras, L., Figueroa, FE., & Khoury, M. (2015). Combination therapy of menstrual derived mesenchymal stem cells and antibiotics ameliorates survival in sepsis. Stem cell research & therapy, 6(1), 1-13.
  • Andrzejewska, A., Lukomska, B., & Janowski, M. (2019). Concise review: mesenchymal stem cells: from roots to boost. Stem Cells, 37(7), 855-864.
  • Apel, A., Groth, A., Schlesinger, S., Bruns, H., Schemmer, P., Büchler, MW., & Herr, I. (2009). Suitability of human mesenchymal stem cells for gene therapy depends on the expansion medium. Experimental Cell Research, 315(3), 498-507.
  • Barky, ARE., Ali, EMM., & Mohamed, TM. (2017). Stem cells, classifications and their clinical applications. American Journal of Pharmacology, 1(1), 001-007.
  • Bayraç, AT., & Kandemir, BB. (2018). Domuz Jelatinine Özgü DNA Aptamerlerinin Seçilimi ve Karakterizasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 774-778.
  • Bernemann, C., Greber, B., Ko, K., Sterneckert, J., Han, DW., Araúzo‐Bravo, MJ., & Schöler, HR. (2011). Distinct developmental ground states of epiblast stem cell lines determine different pluripotency features. Stem cells, 29(10), 1496-1503.
  • Biehl, JK., & Russell, B. (2009). Introduction to stem cell therapy. The Journal of cardiovascular nursing, 24(2), 98. Birbrair, A., & Frenette, PS. (2016). Niche heterogeneity in the bone marrow. Annals of the New York Academy of Sciences, 1370(1), 82.
  • Blau, HM., Brazelton, TR., & Weimann, JM. (2001). The evolving concept of a stem cell: entity or function? Cell, 105(7), 829-841.
  • Bollini, S., Cheung, KK., Riegler, J., Dong, X., Smart, N., Ghionzoli, M., Loukogeorgakis, SP., Maghsoudlou, P., Dubé, KN., Riley, PR., Lythgoe, MF., & De Coppi, P. (2011). Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem cells and development, 20(11), 1985-1994.
  • Brabletz, S., Schmalhofer, O., & Brabletz, T. (2009). Gastrointestinal stem cells in development and cancer. The Journal of pathology, 217(2), 307-317.
  • Brittan, M., & Wright, NA. (2002). Gastrointestinal stem cells. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 197(4), 492-509.
  • Cao, W., Cao, K., Cao, J., Wang, Y., & Shi, Y. (2015). Mesenchymal stem cells and adaptive immune responses. Immunology letters, 168(2), 147-153.
  • Chagastelles, PC., & Nardi, NB. (2011). Biology of stem cells: an overview. Kidney international supplements, 1(3), 63-67.
  • Choi, KH., Yoon, JW., Kim, M., Lee, HJ., Jeong, J., Ryu, M., Jo, C., & Lee, CK. (2021). Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 429-457.
  • Clarke, DL., Johansson, CB., Wilbertz, J., Veress, B., Nilsson, E., Karlström, H., Lendahl, U., & Frisen, J. (2000). Generalized potential of adult neural stem cells. Science, 288(5471), 1660-1663.
  • Clause, KC., Liu, LJ., & Tobita, K. (2010). Directed stem cell differentiation: the role of physical forces. Cell communication & adhesion, 17(2), 48-54.
  • Cotsarelis, G. (2006). Epithelial stem cells: a folliculocentric view. Journal of investigative dermatology, 126(7), 1459-1468.
  • Cuende, N., Rasko, JE., Koh, MB., Dominici, M., & Ikonomou, L. (2018). Cell, tissue and gene products with marketing authorization in 2018 worldwide. Cytotherapy, 20(11), 1401-1413.
  • Çerci, E., & Erdost, H. (2019). Kök Hücre. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 14(2), 221-228. de Miguel, MP., Prieto, I., Moratilla, A., Arias, J., & Aller, MA. (2019). Mesenchymal stem cells for liver regeneration in liver failure: from experimental models to clinical trials. Stem cells international, 2019.
  • DeGeorge, Jr, BR., Rosenberg, M., Eckstein, V., Gao, E., Herzog, N., Katus, HA., Koch, WJ., Frey, N., & Most, P. (2008). BMP‐2 and FGF‐2 Synergistically Facilitate Adoption of a Cardiac Phenotype in Somatic Bone Marrow c‐kit+/Sca‐1+ Stem Cells. Clinical and translational science, 1(2), 116-125.
  • Devkate, GV., Tate, SS., Bhujbal, AS., Tupe, AP., & Patil, RN. (2016). Stem cell: A Review. International Journal of Pharmacy and Pharmaceutical Sciences, 8, 295-311.
  • Didar, TF., & Tabrizian, M. (2010). Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices. Lab on a Chip, 10(22), 3043-3053.
  • Ditadi, A., de Coppi, P., Picone, O., Gautreau, L., Smati, R., Six, E., Bonhomme, D., Ezine, S., Frydman, R., Cavazzana-Calvo, M., & André-Schmutz, I. (2009). Human and murine amniotic fluid c-Kit+ Lin− cells display hematopoietic activity. Blood, The Journal of the American Society of Hematology, 113(17), 3953-3960.
  • Dulak, J., Szade, K., Szade, A., Nowak, W., & Józkowicz, A. (2015). Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochimica Polonica, 62(3), 329-337.
  • Fitzsimmons, RE., Mazurek, MS., Soos, & A., Simmons, CA. (2018). Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem cells international, 8031718.
  • Freund, C., Davis, RP., Gkatzis, K., Ward-van Oostwaard, D., & Mummery, CL. (2010). The first reported generation of human induced pluripotent stem cells (iPS cells) and iPS cell-derived cardiomyocytes in the Netherlands. Netherlands Heart Journal, 18(1), 51.
  • Girlovanu, M., Susman, S., Soritau, O., Rus-Ciuca, D., Melincovici, C., Constantin, AM., & Mihu, CM. (2015). Stem cells-biological update and cell therapy progress. Clujul medical, 88(3), 265.
  • Guo, X. L., & Chen, JS. (2015). Research on induced pluripotent stem cells and the application in ocular tissues. International journal of ophthalmology, 8(4), 818.
  • Hosseinirad, H., Rashidi, M., Moghaddam, MM., Tebyanian, H., Nouraei, S., Mirhosseini, SA., Rasouli, M., & Habibian, S. (2018). Stem cell therapy for lung diseases: From fundamental aspects to clinical applications. Cellular and Molecular Biology, 64(10), 92-101.
  • Ismail, A., Hughes, MP., Mulhall, HJ., Oreffo, ROC., & Labeed, FH. (2015). Characterization of human skeletal stem and bone cell populations using dielectrophoresis. Journal of tissue engineering and regenerative medicine, 9(2), 162-168.
  • Johnson, V., Webb, T., Norman, A., Coy, J., Kurihara, J., Regan, D., & Dow, S. (2017). Activated mesenchymal stem cells interact with antibiotics and host innate immune responses to control chronic bacterial infections. Scientific reports, 7(1), 1-18.
  • Kalra, K., & Tomar, PC. (2014). Stem cell: basics, classification and applications. American Journal of Phytomedicine and Clinical Therapeutics, 2(7), 919-930.
  • Kanev, M., & Muranlı, F. G. (2016). Flow sitometri ve kullanım alanları. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 33-38.
  • Karaboz, İ., Kayar, E., & Akar, S. (2008). Flow sitometri ve kullanım alanları. Elektronik Mikrobiyoloji Dergisi, 6(2), 1-18.
  • Kaur, RP., Ludhiadch, A., & Munshi, A. (2019). Single-Cell Genomics: Technology and Applications. In: Barh D, Azevedo V. Editors. Single-Cell Omics. United States Academic Press. pp: 179-197.
  • Kaya, MM., & Tutun, H. (2021). Monoclonal Antibodies and Their Uses in Therapy. Turkish Journal of Agriculture-Food Science and Technology, 9(3), 515-530.
  • Kishino, Y., Fujita, J., Tohyama, S., Okada, M., Tanosaki, S., Someya, S., & Fukuda, K. (2020). Toward the realization of cardiac regenerative medicine using pluripotent stem cells. Inflammation and regeneration, 40(1), 1-6.
  • Kolagar, T. A., Farzaneh, M., Nikkar, N., & Khoshnam, S.E. (2020). Human pluripotent stem cells in neurodegenerative diseases: potentials, advances and limitations. Current stem cell research & therapy, 15(2), 102-110.
  • Kountouras, J., Boura, P., & Lygidakis, NJ. (2001). Liver regeneration after hepatectomy. Hepato-gastroenterology, 48(38), 556-562.
  • Kowalkowski, T., Buszewski, B., Cantado, C., & Dondi, F. (2006). Field-flow fractionation: theory, techniques, applications and the challenges. Critical reviews in analytical chemistry, 36(2), 129-135.
  • Köse, O. (2015). Epidermal Kök Hücreler/Epidermal Stem Cells. Turk Dermatoloji Dergisi, 9(1), 23.
  • Krasnodembskaya, A., Samarani, G., Song, Y., Zhuo, H., Su, X., Lee, J-W., Gupta, N., Petrini, M., & Matthay, MA. (2012). Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. American Journal of Physiology-Lung Cellular and Molecular Physiology, 302(10), 1003-1013.
  • Ku, HT. (2008). Pancreatic Progenitor Cells—Recent Studies. Endocrinology, 149(9), 4312-4316.
  • Kumar, R., Sharma, A., Pattnaik, AK., & Varadwaj, PK. (2010). Stem cells: An overview with respect to cardiovascular and renal disease. Journal of natural science, biology, and medicine, 1(1), 43.
  • Le Blanc, K., & Davies, LC. (2015). Mesenchymal stromal cells and the innate immune response. Immunology letters, 168(2), 140-146.
  • Linke, A., Müller, P., Nurzynska, D., Casarsa, C., Torella, D., Nascimbene, A., Castaldo, C., Cascapera, S., Böhm, M., Quaini, F., Urbanek, K., Leri, A., Hintze, TH., Kajstura, J., & Anversa, P. (2005). Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proceedings of the national academy of sciences, 102(25), 8966-8971.
  • Liras, A., Segovia, C., & Gabán, AS. (2013). Pluripotent Stem Cells. In: Bhartiya D, Lenka N. Editors. Induced Pluripotent Stem Cells: Therapeutic Applications in Monogenic and Metabolic Diseases, and Regulatory and Bioethical considerations. London, Unıted Kıngdom: In Tech Open, pp: 529-554.
  • Lu, SJ., Lee, RJ., Napoli, C., Oh, S., Kimbrel, EA., & Feng, Q. (2011). The promise and therapeutic potential of human ES and iPS cells. Stem Cells International, 959275.
  • Maehr, R., Chen, S., Snitow, M., Ludwig, T., Yagasaki, L., Goland R., Leibel, RL., & Melton, DA. (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Sciences, 106(37), 15768-15773.
  • Mahla, RS. (2016). Stem cells applications in regenerative medicine and disease therapeutics. International journal of cell biology, 6940283.
  • Majekodunmi, SO. (2015). A review on centrifugation in the pharmaceutical industry. American Journal of Biomedical Engineering 5(2), 67-78.
  • Markides, H., Webb, WR., El Haj, AJ., Chippendale, TWE., Coopman, K., Rafiq, Q., & Hewitt, C. (2019). Isolation of mesenchymal stem cells from bone marrow aspirate. In: Moo-Young M. Editor. Comprehensive Biotechnology. United Kingdom: Elsevier. pp: 115-123.
  • Messina, A., Luce, E., Hussein, M., & Dubart-Kupperschmitt, A. (2020). Pluripotent-stem-cell-derived hepatic cells: hepatocytes and organoids for liver therapy and regeneration. Cells, 9(2), 420.
  • Mirzaei, H., Sahebkar, A., Sichani, LS., Moridikia, A., Nazari, S., Sadri Nahand, J., Salehi, H., Stenvang, J., Masoudifar, A., Mirzaei, HR., & Jaafari, MR. (2018). Therapeutic application of multipotent stem cells. Journal of Cellular Physiology, 233(4), 2815-2823.
  • Mitalipov, S., & Wolf, D. (2009). Totipotency, pluripotency and nuclear reprogramming. Engineering of stem cells, 114, 185–199.
  • Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K., Ishida, H., Shimizu, T., Kangawa, K., Sano, S., Okano, T., Kitamura, S., Mori, H. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature medicine, 12(4), 459-465.
  • Ng, YY., Baert, MR., de Haas, EF., Pike-Overzet, K., & Staal, FJ. (2009). Isolation of human and mouse hematopoietic stem cells. Methods in molecular biology, 506, 13-21.
  • Noguchi, H. (2010). Pancreatic stem/progenitor cells for the treatment of diabetes. The review of diabetic studies. The Review of Diabetic Studies, 7(2), 105–111.
  • Ohuchi, S. (2012). Cell-SELEX technology. BioResearch open access, 1(6), 265-272.
  • Overturf, K., Al-Dhalimy, M., Ou, C. N., Finegold, M., & Grompe, M. (1997). Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. The American journal of pathology, 151(5), 1273.
  • Oyar, P. (2016). Dental Kök Hücre Kaynakları ve Kemik Doku Rejenerasyonunda Kullanılma Potansiyelleri. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 26(15), 96-101.
  • Park, Y. G., Moon, J. H., & Kim, J. (2006). A comparative study of magnetic-activated cell sorting, cytotoxicity and preplating for the purification of human myoblasts. Yonsei medical journal, 47(2), 179.
  • Passier, R., & Mummery, C. (2003). Origin and use of embryonic and adult stem cells in differentiation and tissue repair. Cardiovascular research, 58(2), 324-335.
  • Pethig, R., Menachery, A., Pells, S., & De Sousa, P. (2010). Dielectrophoresis: a review of applications for stem cell research. Journal of Biomedicine and Biotechnology, 182581
  • Pirvulet, V. (2015). Gastrointestinal stem cell up-to-date. Journal of medicine and life, 8(2), 245.
  • Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regenerative medicine, 4(1), 1-15.
  • Preffer, F., & Dombkowski, D. (2009). Advances in complex multiparameter flow cytometry technology: Applications in stem cell research. Cytometry Part B: Clinical Cytometry: The Journal of the International Society for Analytical Cytology, 76(5), 295-314.
  • Radisic, M., Iyer, R. K., & Murthy, S. K. (2006). Micro-and nanotechnology in cell separation. International journal of nanomedicine, 1(1), 3.
  • Rajabzadeh, N., Fathi, E., & Farahzadi, R. (2019). Stem cell-based regenerative medicine. Stem cell investigation, 6.19.
  • Rajpoot, S., & Tewari, G. (2018). Review Article Review on Stem Cells: Basics Classification and Applications. International Journal of Pharmaceutical Sciences Review and Research, 49(2), 48-52.
  • Kalra, K., & Tomar, P. C. (2014). Stem cell: basics, classification and applications. American Journal of Phytomedicine and Clinical Therapeutics, 2(7), 919-930.
  • Ramalho-Santos, M., & Willenbring, H. (2007). On the origin of the term “stem cell”. Cell stem cell, 1(1), 35-38.
  • Reiss, K., Cheng, W., Ferber, A., Kajstura, J., Li, P., Li, B., Olivetti, G., Homcy, CJ., Baserga, R., & Anversa, P. (1996). Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proceedings of the National Academy of Sciences, 93(16), 8630-8635.
  • Reschigliani, P., Zattonii, A., Rodai, B., Michelinii, E., & Rodai, A. (2005). Field-flow fractionation and biotechnology. TRENDS in Biotechnology, 23(9), 475-483.
  • Robintoni DA., & Daley, GQ. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481(7381), 295-305.
  • Roda, B., Lanzoni, G., Alviano, F., Zattoni, A., Costa, R., Di Carlo, A., Marchionni, C., Franchina, M., Ricci, F., Luigi Tazzari, P., Pagliaro, P., Scalinci, SZ., Bonsi, L., Reschiglian, P., & Bagnara, GP. (2009a). A novel stem cell tag-less sorting method. Stem cell reviews and reports, 5(4), 420-427.
  • Roda, B., Zattoni, A., Reschiglian, P., Moon, M. H., Mirasoli, M., Michelini, E., & Roda, A. (2009b). Field-flow fractionation in bioanalysis: A review of recent trends. Analytica chimica acta, 635(2), 132-143.
  • Semedo, P., Burgos-Silva, M., Donizetti-Oliveira, C., & Camara, NOS. (2011). How do mesenchymal stem cells repair? In: Gholamrezanezhad A. Editors Stem Cells in Clinic and Research. London: Unıted Kıngdom, IntechOpen. P:83-104.
  • Shen, Q., Jin, H., & Wang, X. (2013). Epidermal stem cells and their epigenetic regulation. International journal of molecular sciences, 14(9), 17861-17880.
  • Singh, V. K., Saini, A., Kalsan, M., Kumar, N., & Chandra, R. (2016). Describing the stem cell potency: the various methods of functional assessment and in silico diagnostics. Frontiers in cell and developmental biology, 4, 134.
  • Sobhani, A., Khanlarkhani, N., Baazm, M., Mohammadzadeh, F., Najafi, A., Mehdinejadiani, S., & Aval, FS. (2017). Multipotent stem cell and current application. Acta Medica Iranica, 6-23.
  • Soejitno, A., & Prayudi, PKA. (2011). The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Therapeutic advances in endocrinology and metabolism, 2(5), 197-210.
  • Song, LIN., & Tuan, RS. (2004). Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. The FASEB Journal, 18(9), 980-982.
  • Stoltenburg, R., Reinemann, C., & Strehlitz, B. (2007). SELEX—a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomolecular engineering, 24(4), 381-403.
  • Tabar, V., & Studer, L. (2014). Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nature Reviews Genetics, 15(2), 82-92.
  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell, 131(5), 861-872.
  • Tateishi, K., He, J., Taranova, O., Liang, G., D'Alessio, AC., & Zhang, Y. (2008). Generation of insulin-secreting islet-like clusters from human skin fibroblasts. Journal of Biological Chemistry, 283(46), 31601-31607.
  • Taupin, P., Ray, J., Fischer, WH., Suhr, ST., Hakansson, K., Grubb, A., & Gage, FH. (2000). FGF-2-responsive neural stem cell proliferation requires CCg, a novel autocrine/paracrine cofactor. Neuron, 28(2), 385-397.
  • Till, JE., & McCulloch, EA. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation research, 14(2), 213-222.
  • Ullah, I., Subbarao, RB., & Rho, GJ. (2015). Human mesenchymal stem cells-current trends and future prospective. Bioscience reports, 35(2).
  • van Noort, D., Ong, S. M., Zhang, C., Zhang, S., Arooz, T., & Yu, H. (2009). Stem cells in microfluidics. Biotechnology progress, 25(1), 52-60.
  • Verhulst, S., Best, J., van Grunsven, L. A., & Dollé, L. (2015). Advances in hepatic stem/progenitor cell biology. EXCLI journal, 14, 33.
  • Wei, J.P., Zhang, T.S., Kawa, S., Aizawa, T., Ota, M., Akaike, T., Kato, K., Konishi, I., &Nikaido, T. (2003). Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell transplantation, 12(5), 545-552.
  • Wu, HW., Lin, CC., & Lee, GB. (2011). Stem cells in microfluidics. Biomicrofluidics, 5(1), 013401. Yamanaka, S. (2020). Pluripotent Stem Cell-Based Cell Therapy—Promise and Challenges. Cell stem cell, 27(4), 523-531.
  • Yang, R., Liu, F., Wang, J., Chen, X., Xie, J., & Xiong, K. (2019). Epidermal stem cells in wound healing and their clinical applications. Stem cell research & therapy, 10(1), 1-14.
  • Yang, X., Meng, Y., Han, Z., Ye, F., Wei, L., & Zong, C. (2020). Mesenchymal stem cell therapy for liver disease: full of chances and challenges. Cell & Bioscience, 10(1), 1-18.
  • Ye, L., Swingen, C., & Zhang, J. (2013). Induced pluripotent stem cells and their potential for basic and clinical sciences. Current Cardiology Reviews, 9(1), 63-72.
  • Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: past, present, and future. Stem cell research & therapy, 10(1), 1-22.
  • Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., Giunti, D., Ceravolo, A., Cazzanti, F., Frassoni, F., Mancardi, & G., Uccelli, A. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106(5), 1755-61.
  • Zeb Q, Wang C, Shafiq S, Liu L (2019). An Overview of Single-Cell Isolation Techniques. In: Barh D, Azevedo V. Editors, Single-Cell Omics. United States Academic Press pp:101-135.
  • Zhang, J., Liu, J., Liu, L., McKeehan, WL., & Wang, F. (2012). The fibroblast growth factor signaling axis controls cardiac stem cell differentiation through regulating autophagy. Autophagy, 8(4), 690-691.
  • Zhang, J., Wei, X., Zeng, R., Xu, F., & Li, X. (2017). Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Future Sciencie OA, 3(2), FSO187.
  • Zhang, Y., Bai, XF., & Huang, CX. (2003). Hepatic stem cells: existence and origin. World Journal of Gastroenterology: WJG, 9(2), 201.
  • Zhao, X., & Moore, DL. (2018). Neural stem cells: developmental mechanisms and disease modeling. Cell and tissue research. 371(1),1–6.
  • Zhu, B., & Murthy, SK. (2013). Stem cell separation technologies. Current opinion in chemical engineering, 2(1), 3-7.

MICROPLASTICS PRESENCE IN WATER SOURCES AND ITS IMPORTANCE FOR HUMAN HEALTH

Year 2021, , 79 - 88, 11.09.2021
https://doi.org/10.38137/vftd.922677

Abstract

The use of plastic worldwide is over 300 million tons per year. Most of the plastic produced is broken down into smaller particles by physico-chemical processes. Although there is not a standard definition for microplastics, they are generally considered as plastic particles smaller than 5 mm but larger than 1 µm or 100 nm. Microplastics in the environment can be derived from the breakdown of personal cleaning products (eg sunscreens and other cosmetic products) and industrial products (painted surfaces, tires, and synthetic fabrics) to which they are added. These various sources have led to widespread contamination of the natural environment with microplastics. The indiscriminate use of plastics and the inadequate disposal of their waste cause serious concerns about ecosystem quality at the global level. The widespread use of microplastic pollution also raises concerns about its harmful effects on living organisms. Microplastics have recently been detected in drinking water and drinking water supplies. However, since there are no standard sampling, extraction and identification methods for microplastics, there is a limited number of studies on their presence in drinking water. Scientific evidence reveals that exposure to microplastics causes a wide range of toxic effectson different cells and organs, from nutritional deterioration to reproductive performance, adverse alterations in liver physiology, energy metabolism impairments. Further studies are needed on the formation of microplastics in drinking water in terms of risk assessment on human health. In addition, legal regulations are important in terms of reducing potential sources of microplastics, wastewater treatment technologies and waste management.

References

  • Adams, JD., Kim, U., & Soh, HT. (2008). Multitarget magnetic activated cell sorter. Proceedings of the National Academy of Sciences, 105(47), 18165-18170.
  • Adan, A., Alizada, G., Kiraz, Y., Baran, Y., & Nalbant, A. (2017). Flow cytometry: basic principles and applications. Critical reviews in biotechnology, 37(2), 163-176.
  • Alcayaga-Miranda, F., Cuenca, J., Martin, A., Contreras, L., Figueroa, FE., & Khoury, M. (2015). Combination therapy of menstrual derived mesenchymal stem cells and antibiotics ameliorates survival in sepsis. Stem cell research & therapy, 6(1), 1-13.
  • Andrzejewska, A., Lukomska, B., & Janowski, M. (2019). Concise review: mesenchymal stem cells: from roots to boost. Stem Cells, 37(7), 855-864.
  • Apel, A., Groth, A., Schlesinger, S., Bruns, H., Schemmer, P., Büchler, MW., & Herr, I. (2009). Suitability of human mesenchymal stem cells for gene therapy depends on the expansion medium. Experimental Cell Research, 315(3), 498-507.
  • Barky, ARE., Ali, EMM., & Mohamed, TM. (2017). Stem cells, classifications and their clinical applications. American Journal of Pharmacology, 1(1), 001-007.
  • Bayraç, AT., & Kandemir, BB. (2018). Domuz Jelatinine Özgü DNA Aptamerlerinin Seçilimi ve Karakterizasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 774-778.
  • Bernemann, C., Greber, B., Ko, K., Sterneckert, J., Han, DW., Araúzo‐Bravo, MJ., & Schöler, HR. (2011). Distinct developmental ground states of epiblast stem cell lines determine different pluripotency features. Stem cells, 29(10), 1496-1503.
  • Biehl, JK., & Russell, B. (2009). Introduction to stem cell therapy. The Journal of cardiovascular nursing, 24(2), 98. Birbrair, A., & Frenette, PS. (2016). Niche heterogeneity in the bone marrow. Annals of the New York Academy of Sciences, 1370(1), 82.
  • Blau, HM., Brazelton, TR., & Weimann, JM. (2001). The evolving concept of a stem cell: entity or function? Cell, 105(7), 829-841.
  • Bollini, S., Cheung, KK., Riegler, J., Dong, X., Smart, N., Ghionzoli, M., Loukogeorgakis, SP., Maghsoudlou, P., Dubé, KN., Riley, PR., Lythgoe, MF., & De Coppi, P. (2011). Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem cells and development, 20(11), 1985-1994.
  • Brabletz, S., Schmalhofer, O., & Brabletz, T. (2009). Gastrointestinal stem cells in development and cancer. The Journal of pathology, 217(2), 307-317.
  • Brittan, M., & Wright, NA. (2002). Gastrointestinal stem cells. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 197(4), 492-509.
  • Cao, W., Cao, K., Cao, J., Wang, Y., & Shi, Y. (2015). Mesenchymal stem cells and adaptive immune responses. Immunology letters, 168(2), 147-153.
  • Chagastelles, PC., & Nardi, NB. (2011). Biology of stem cells: an overview. Kidney international supplements, 1(3), 63-67.
  • Choi, KH., Yoon, JW., Kim, M., Lee, HJ., Jeong, J., Ryu, M., Jo, C., & Lee, CK. (2021). Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 429-457.
  • Clarke, DL., Johansson, CB., Wilbertz, J., Veress, B., Nilsson, E., Karlström, H., Lendahl, U., & Frisen, J. (2000). Generalized potential of adult neural stem cells. Science, 288(5471), 1660-1663.
  • Clause, KC., Liu, LJ., & Tobita, K. (2010). Directed stem cell differentiation: the role of physical forces. Cell communication & adhesion, 17(2), 48-54.
  • Cotsarelis, G. (2006). Epithelial stem cells: a folliculocentric view. Journal of investigative dermatology, 126(7), 1459-1468.
  • Cuende, N., Rasko, JE., Koh, MB., Dominici, M., & Ikonomou, L. (2018). Cell, tissue and gene products with marketing authorization in 2018 worldwide. Cytotherapy, 20(11), 1401-1413.
  • Çerci, E., & Erdost, H. (2019). Kök Hücre. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 14(2), 221-228. de Miguel, MP., Prieto, I., Moratilla, A., Arias, J., & Aller, MA. (2019). Mesenchymal stem cells for liver regeneration in liver failure: from experimental models to clinical trials. Stem cells international, 2019.
  • DeGeorge, Jr, BR., Rosenberg, M., Eckstein, V., Gao, E., Herzog, N., Katus, HA., Koch, WJ., Frey, N., & Most, P. (2008). BMP‐2 and FGF‐2 Synergistically Facilitate Adoption of a Cardiac Phenotype in Somatic Bone Marrow c‐kit+/Sca‐1+ Stem Cells. Clinical and translational science, 1(2), 116-125.
  • Devkate, GV., Tate, SS., Bhujbal, AS., Tupe, AP., & Patil, RN. (2016). Stem cell: A Review. International Journal of Pharmacy and Pharmaceutical Sciences, 8, 295-311.
  • Didar, TF., & Tabrizian, M. (2010). Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices. Lab on a Chip, 10(22), 3043-3053.
  • Ditadi, A., de Coppi, P., Picone, O., Gautreau, L., Smati, R., Six, E., Bonhomme, D., Ezine, S., Frydman, R., Cavazzana-Calvo, M., & André-Schmutz, I. (2009). Human and murine amniotic fluid c-Kit+ Lin− cells display hematopoietic activity. Blood, The Journal of the American Society of Hematology, 113(17), 3953-3960.
  • Dulak, J., Szade, K., Szade, A., Nowak, W., & Józkowicz, A. (2015). Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochimica Polonica, 62(3), 329-337.
  • Fitzsimmons, RE., Mazurek, MS., Soos, & A., Simmons, CA. (2018). Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem cells international, 8031718.
  • Freund, C., Davis, RP., Gkatzis, K., Ward-van Oostwaard, D., & Mummery, CL. (2010). The first reported generation of human induced pluripotent stem cells (iPS cells) and iPS cell-derived cardiomyocytes in the Netherlands. Netherlands Heart Journal, 18(1), 51.
  • Girlovanu, M., Susman, S., Soritau, O., Rus-Ciuca, D., Melincovici, C., Constantin, AM., & Mihu, CM. (2015). Stem cells-biological update and cell therapy progress. Clujul medical, 88(3), 265.
  • Guo, X. L., & Chen, JS. (2015). Research on induced pluripotent stem cells and the application in ocular tissues. International journal of ophthalmology, 8(4), 818.
  • Hosseinirad, H., Rashidi, M., Moghaddam, MM., Tebyanian, H., Nouraei, S., Mirhosseini, SA., Rasouli, M., & Habibian, S. (2018). Stem cell therapy for lung diseases: From fundamental aspects to clinical applications. Cellular and Molecular Biology, 64(10), 92-101.
  • Ismail, A., Hughes, MP., Mulhall, HJ., Oreffo, ROC., & Labeed, FH. (2015). Characterization of human skeletal stem and bone cell populations using dielectrophoresis. Journal of tissue engineering and regenerative medicine, 9(2), 162-168.
  • Johnson, V., Webb, T., Norman, A., Coy, J., Kurihara, J., Regan, D., & Dow, S. (2017). Activated mesenchymal stem cells interact with antibiotics and host innate immune responses to control chronic bacterial infections. Scientific reports, 7(1), 1-18.
  • Kalra, K., & Tomar, PC. (2014). Stem cell: basics, classification and applications. American Journal of Phytomedicine and Clinical Therapeutics, 2(7), 919-930.
  • Kanev, M., & Muranlı, F. G. (2016). Flow sitometri ve kullanım alanları. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 33-38.
  • Karaboz, İ., Kayar, E., & Akar, S. (2008). Flow sitometri ve kullanım alanları. Elektronik Mikrobiyoloji Dergisi, 6(2), 1-18.
  • Kaur, RP., Ludhiadch, A., & Munshi, A. (2019). Single-Cell Genomics: Technology and Applications. In: Barh D, Azevedo V. Editors. Single-Cell Omics. United States Academic Press. pp: 179-197.
  • Kaya, MM., & Tutun, H. (2021). Monoclonal Antibodies and Their Uses in Therapy. Turkish Journal of Agriculture-Food Science and Technology, 9(3), 515-530.
  • Kishino, Y., Fujita, J., Tohyama, S., Okada, M., Tanosaki, S., Someya, S., & Fukuda, K. (2020). Toward the realization of cardiac regenerative medicine using pluripotent stem cells. Inflammation and regeneration, 40(1), 1-6.
  • Kolagar, T. A., Farzaneh, M., Nikkar, N., & Khoshnam, S.E. (2020). Human pluripotent stem cells in neurodegenerative diseases: potentials, advances and limitations. Current stem cell research & therapy, 15(2), 102-110.
  • Kountouras, J., Boura, P., & Lygidakis, NJ. (2001). Liver regeneration after hepatectomy. Hepato-gastroenterology, 48(38), 556-562.
  • Kowalkowski, T., Buszewski, B., Cantado, C., & Dondi, F. (2006). Field-flow fractionation: theory, techniques, applications and the challenges. Critical reviews in analytical chemistry, 36(2), 129-135.
  • Köse, O. (2015). Epidermal Kök Hücreler/Epidermal Stem Cells. Turk Dermatoloji Dergisi, 9(1), 23.
  • Krasnodembskaya, A., Samarani, G., Song, Y., Zhuo, H., Su, X., Lee, J-W., Gupta, N., Petrini, M., & Matthay, MA. (2012). Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. American Journal of Physiology-Lung Cellular and Molecular Physiology, 302(10), 1003-1013.
  • Ku, HT. (2008). Pancreatic Progenitor Cells—Recent Studies. Endocrinology, 149(9), 4312-4316.
  • Kumar, R., Sharma, A., Pattnaik, AK., & Varadwaj, PK. (2010). Stem cells: An overview with respect to cardiovascular and renal disease. Journal of natural science, biology, and medicine, 1(1), 43.
  • Le Blanc, K., & Davies, LC. (2015). Mesenchymal stromal cells and the innate immune response. Immunology letters, 168(2), 140-146.
  • Linke, A., Müller, P., Nurzynska, D., Casarsa, C., Torella, D., Nascimbene, A., Castaldo, C., Cascapera, S., Böhm, M., Quaini, F., Urbanek, K., Leri, A., Hintze, TH., Kajstura, J., & Anversa, P. (2005). Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proceedings of the national academy of sciences, 102(25), 8966-8971.
  • Liras, A., Segovia, C., & Gabán, AS. (2013). Pluripotent Stem Cells. In: Bhartiya D, Lenka N. Editors. Induced Pluripotent Stem Cells: Therapeutic Applications in Monogenic and Metabolic Diseases, and Regulatory and Bioethical considerations. London, Unıted Kıngdom: In Tech Open, pp: 529-554.
  • Lu, SJ., Lee, RJ., Napoli, C., Oh, S., Kimbrel, EA., & Feng, Q. (2011). The promise and therapeutic potential of human ES and iPS cells. Stem Cells International, 959275.
  • Maehr, R., Chen, S., Snitow, M., Ludwig, T., Yagasaki, L., Goland R., Leibel, RL., & Melton, DA. (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Sciences, 106(37), 15768-15773.
  • Mahla, RS. (2016). Stem cells applications in regenerative medicine and disease therapeutics. International journal of cell biology, 6940283.
  • Majekodunmi, SO. (2015). A review on centrifugation in the pharmaceutical industry. American Journal of Biomedical Engineering 5(2), 67-78.
  • Markides, H., Webb, WR., El Haj, AJ., Chippendale, TWE., Coopman, K., Rafiq, Q., & Hewitt, C. (2019). Isolation of mesenchymal stem cells from bone marrow aspirate. In: Moo-Young M. Editor. Comprehensive Biotechnology. United Kingdom: Elsevier. pp: 115-123.
  • Messina, A., Luce, E., Hussein, M., & Dubart-Kupperschmitt, A. (2020). Pluripotent-stem-cell-derived hepatic cells: hepatocytes and organoids for liver therapy and regeneration. Cells, 9(2), 420.
  • Mirzaei, H., Sahebkar, A., Sichani, LS., Moridikia, A., Nazari, S., Sadri Nahand, J., Salehi, H., Stenvang, J., Masoudifar, A., Mirzaei, HR., & Jaafari, MR. (2018). Therapeutic application of multipotent stem cells. Journal of Cellular Physiology, 233(4), 2815-2823.
  • Mitalipov, S., & Wolf, D. (2009). Totipotency, pluripotency and nuclear reprogramming. Engineering of stem cells, 114, 185–199.
  • Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K., Ishida, H., Shimizu, T., Kangawa, K., Sano, S., Okano, T., Kitamura, S., Mori, H. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature medicine, 12(4), 459-465.
  • Ng, YY., Baert, MR., de Haas, EF., Pike-Overzet, K., & Staal, FJ. (2009). Isolation of human and mouse hematopoietic stem cells. Methods in molecular biology, 506, 13-21.
  • Noguchi, H. (2010). Pancreatic stem/progenitor cells for the treatment of diabetes. The review of diabetic studies. The Review of Diabetic Studies, 7(2), 105–111.
  • Ohuchi, S. (2012). Cell-SELEX technology. BioResearch open access, 1(6), 265-272.
  • Overturf, K., Al-Dhalimy, M., Ou, C. N., Finegold, M., & Grompe, M. (1997). Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. The American journal of pathology, 151(5), 1273.
  • Oyar, P. (2016). Dental Kök Hücre Kaynakları ve Kemik Doku Rejenerasyonunda Kullanılma Potansiyelleri. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 26(15), 96-101.
  • Park, Y. G., Moon, J. H., & Kim, J. (2006). A comparative study of magnetic-activated cell sorting, cytotoxicity and preplating for the purification of human myoblasts. Yonsei medical journal, 47(2), 179.
  • Passier, R., & Mummery, C. (2003). Origin and use of embryonic and adult stem cells in differentiation and tissue repair. Cardiovascular research, 58(2), 324-335.
  • Pethig, R., Menachery, A., Pells, S., & De Sousa, P. (2010). Dielectrophoresis: a review of applications for stem cell research. Journal of Biomedicine and Biotechnology, 182581
  • Pirvulet, V. (2015). Gastrointestinal stem cell up-to-date. Journal of medicine and life, 8(2), 245.
  • Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regenerative medicine, 4(1), 1-15.
  • Preffer, F., & Dombkowski, D. (2009). Advances in complex multiparameter flow cytometry technology: Applications in stem cell research. Cytometry Part B: Clinical Cytometry: The Journal of the International Society for Analytical Cytology, 76(5), 295-314.
  • Radisic, M., Iyer, R. K., & Murthy, S. K. (2006). Micro-and nanotechnology in cell separation. International journal of nanomedicine, 1(1), 3.
  • Rajabzadeh, N., Fathi, E., & Farahzadi, R. (2019). Stem cell-based regenerative medicine. Stem cell investigation, 6.19.
  • Rajpoot, S., & Tewari, G. (2018). Review Article Review on Stem Cells: Basics Classification and Applications. International Journal of Pharmaceutical Sciences Review and Research, 49(2), 48-52.
  • Kalra, K., & Tomar, P. C. (2014). Stem cell: basics, classification and applications. American Journal of Phytomedicine and Clinical Therapeutics, 2(7), 919-930.
  • Ramalho-Santos, M., & Willenbring, H. (2007). On the origin of the term “stem cell”. Cell stem cell, 1(1), 35-38.
  • Reiss, K., Cheng, W., Ferber, A., Kajstura, J., Li, P., Li, B., Olivetti, G., Homcy, CJ., Baserga, R., & Anversa, P. (1996). Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proceedings of the National Academy of Sciences, 93(16), 8630-8635.
  • Reschigliani, P., Zattonii, A., Rodai, B., Michelinii, E., & Rodai, A. (2005). Field-flow fractionation and biotechnology. TRENDS in Biotechnology, 23(9), 475-483.
  • Robintoni DA., & Daley, GQ. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481(7381), 295-305.
  • Roda, B., Lanzoni, G., Alviano, F., Zattoni, A., Costa, R., Di Carlo, A., Marchionni, C., Franchina, M., Ricci, F., Luigi Tazzari, P., Pagliaro, P., Scalinci, SZ., Bonsi, L., Reschiglian, P., & Bagnara, GP. (2009a). A novel stem cell tag-less sorting method. Stem cell reviews and reports, 5(4), 420-427.
  • Roda, B., Zattoni, A., Reschiglian, P., Moon, M. H., Mirasoli, M., Michelini, E., & Roda, A. (2009b). Field-flow fractionation in bioanalysis: A review of recent trends. Analytica chimica acta, 635(2), 132-143.
  • Semedo, P., Burgos-Silva, M., Donizetti-Oliveira, C., & Camara, NOS. (2011). How do mesenchymal stem cells repair? In: Gholamrezanezhad A. Editors Stem Cells in Clinic and Research. London: Unıted Kıngdom, IntechOpen. P:83-104.
  • Shen, Q., Jin, H., & Wang, X. (2013). Epidermal stem cells and their epigenetic regulation. International journal of molecular sciences, 14(9), 17861-17880.
  • Singh, V. K., Saini, A., Kalsan, M., Kumar, N., & Chandra, R. (2016). Describing the stem cell potency: the various methods of functional assessment and in silico diagnostics. Frontiers in cell and developmental biology, 4, 134.
  • Sobhani, A., Khanlarkhani, N., Baazm, M., Mohammadzadeh, F., Najafi, A., Mehdinejadiani, S., & Aval, FS. (2017). Multipotent stem cell and current application. Acta Medica Iranica, 6-23.
  • Soejitno, A., & Prayudi, PKA. (2011). The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Therapeutic advances in endocrinology and metabolism, 2(5), 197-210.
  • Song, LIN., & Tuan, RS. (2004). Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. The FASEB Journal, 18(9), 980-982.
  • Stoltenburg, R., Reinemann, C., & Strehlitz, B. (2007). SELEX—a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomolecular engineering, 24(4), 381-403.
  • Tabar, V., & Studer, L. (2014). Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nature Reviews Genetics, 15(2), 82-92.
  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell, 131(5), 861-872.
  • Tateishi, K., He, J., Taranova, O., Liang, G., D'Alessio, AC., & Zhang, Y. (2008). Generation of insulin-secreting islet-like clusters from human skin fibroblasts. Journal of Biological Chemistry, 283(46), 31601-31607.
  • Taupin, P., Ray, J., Fischer, WH., Suhr, ST., Hakansson, K., Grubb, A., & Gage, FH. (2000). FGF-2-responsive neural stem cell proliferation requires CCg, a novel autocrine/paracrine cofactor. Neuron, 28(2), 385-397.
  • Till, JE., & McCulloch, EA. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation research, 14(2), 213-222.
  • Ullah, I., Subbarao, RB., & Rho, GJ. (2015). Human mesenchymal stem cells-current trends and future prospective. Bioscience reports, 35(2).
  • van Noort, D., Ong, S. M., Zhang, C., Zhang, S., Arooz, T., & Yu, H. (2009). Stem cells in microfluidics. Biotechnology progress, 25(1), 52-60.
  • Verhulst, S., Best, J., van Grunsven, L. A., & Dollé, L. (2015). Advances in hepatic stem/progenitor cell biology. EXCLI journal, 14, 33.
  • Wei, J.P., Zhang, T.S., Kawa, S., Aizawa, T., Ota, M., Akaike, T., Kato, K., Konishi, I., &Nikaido, T. (2003). Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell transplantation, 12(5), 545-552.
  • Wu, HW., Lin, CC., & Lee, GB. (2011). Stem cells in microfluidics. Biomicrofluidics, 5(1), 013401. Yamanaka, S. (2020). Pluripotent Stem Cell-Based Cell Therapy—Promise and Challenges. Cell stem cell, 27(4), 523-531.
  • Yang, R., Liu, F., Wang, J., Chen, X., Xie, J., & Xiong, K. (2019). Epidermal stem cells in wound healing and their clinical applications. Stem cell research & therapy, 10(1), 1-14.
  • Yang, X., Meng, Y., Han, Z., Ye, F., Wei, L., & Zong, C. (2020). Mesenchymal stem cell therapy for liver disease: full of chances and challenges. Cell & Bioscience, 10(1), 1-18.
  • Ye, L., Swingen, C., & Zhang, J. (2013). Induced pluripotent stem cells and their potential for basic and clinical sciences. Current Cardiology Reviews, 9(1), 63-72.
  • Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: past, present, and future. Stem cell research & therapy, 10(1), 1-22.
  • Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., Giunti, D., Ceravolo, A., Cazzanti, F., Frassoni, F., Mancardi, & G., Uccelli, A. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106(5), 1755-61.
  • Zeb Q, Wang C, Shafiq S, Liu L (2019). An Overview of Single-Cell Isolation Techniques. In: Barh D, Azevedo V. Editors, Single-Cell Omics. United States Academic Press pp:101-135.
  • Zhang, J., Liu, J., Liu, L., McKeehan, WL., & Wang, F. (2012). The fibroblast growth factor signaling axis controls cardiac stem cell differentiation through regulating autophagy. Autophagy, 8(4), 690-691.
  • Zhang, J., Wei, X., Zeng, R., Xu, F., & Li, X. (2017). Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Future Sciencie OA, 3(2), FSO187.
  • Zhang, Y., Bai, XF., & Huang, CX. (2003). Hepatic stem cells: existence and origin. World Journal of Gastroenterology: WJG, 9(2), 201.
  • Zhao, X., & Moore, DL. (2018). Neural stem cells: developmental mechanisms and disease modeling. Cell and tissue research. 371(1),1–6.
  • Zhu, B., & Murthy, SK. (2013). Stem cell separation technologies. Current opinion in chemical engineering, 2(1), 3-7.
There are 107 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Sciences
Journal Section Review
Authors

Ömer Çakmak 0000-0002-7898-1764

Ulaş Acaröz 0000-0002-1533-4519

Publication Date September 11, 2021
Acceptance Date August 26, 2021
Published in Issue Year 2021

Cite

APA Çakmak, Ö., & Acaröz, U. (2021). SU KAYNAKLARINDA MİKROPLASTİKLERİN VARLIĞI VE İNSAN SAĞLIĞI AÇISINDAN ÖNEMİ. Veteriner Farmakoloji Ve Toksikoloji Derneği Bülteni, 12(2), 79-88. https://doi.org/10.38137/vftd.922677

Cited By