Research Article
BibTex RIS Cite

Akkaraman koyunu ve Kıl keçisinde Cavalieri prensibi kullanılarak cerebellum hacminin hesaplanması

Year 2023, Volume: 94 Issue: 2, 144 - 155, 15.06.2023
https://doi.org/10.33188/vetheder.1284279

Abstract

Bu çalışmanın amacı, Akkaraman koyunu ve Kıl keçisinde cerebellum hacmini Cavalieri prensibi kullanarak hesaplamaktır. Çalışmada sağlıklı 1-2 yaşlarında 12 adet erkek hayvana ait (6 koyun ve 6 keçi) cerebellum kullanıldı. Rhombencephalon’dan ayrılan cerebellum’un hassas terazi ile ağırlığı, Archimedes' principle ile hacmi hesaplandı. Cavalieri prensibi ile hacim ölçümü esnasında doku kaybının önüne geçmek için cerebellum’lar 8%’lik agar ile bloklandı. Gri madde ve ak madde ayrımının net yapılabilmesi için, gri madde Berlin blue makroskobik boyama metodu ile boyandı. Boyanan kesitler 600 dpi çözünürlükte tarandı. Taranan bu kesitlere ImageJ programında noktalı alan ölçüm cetveli atılarak gri madde ve ak madde hacmi ayrı ayrı hesaplandı. Yapılan ölçüm sonuçlarına cerebellum ağırlığı koyunda 11.6 gr, keçide 12.55gr hesaplandı. Cerebellum ağırlığının toplam beyin ağırlığına oranı her iki türde de 0.10 olarak ölçüldü. Koyunda cerebellum beynin ağırlığının 9.8% ‘ini, keçide ise 10.11%’unun oluşturmaktadır. Gri madde ve ak madde hacmi koyunda sırasıyla 6.75 ml ve 3.36 ml hesaplandı. Keçide ise gri madde ve ak madde hacmi sırasıyla 6.80 ml ve 3.82 ml olarak ölçüldü. Toplam cerebellum hacminin koyun ve keçide sırasıyla 10.14 ml ve 10.65 ml olduğu görüldü. Koyunda cerebellum hacminin 65.55%’ini gri madde, 33.08%’ini ise ak maddenin oluşturmaktaydı. Keçide ise cerebellum’un 63.88%’i gri madde, 35.85%’ini ise ak maddeden oluşmaktaydı. Elde edilen hacim ölçümü sonuçlarında her iki türde de istatistiki fark gözlenmemiştir (p>0.05). Çiflik hayvanlarında son yıllarda nörodejeneratif hastalık modellerinde bir artış görülmektedir. Bu hastalıklar cerebellum hacminde değişikliğe neden olabilmektedir. Bu açıdan mevcut çalışmada sağlıklı koyun ve keçi cerebellum’undan elde edile hacim değerlerinin, gelecekteki çalışmalar için faydalı olacağı düşünülmektedir.

References

  • 1. Dyce KM, Sack WO, Wensing CJG. Textbook of veterinary anatomy. 4th ed. China: Saunder Elsevier; 2010.
  • 2. Dursun N. Veteriner anatomi III. 7th ed. Ankara: Medisan Yayınevi; 2008.
  • 3. Dayan O, Demiraslan Y. Veteriner sistematik anatomi. 1st ed. Ankara: Nobel Tıp Kitabevleri; 2021.
  • 4. König HE, Liebich HG, Cerveny C. Veterinary anatomy of domestic mammals textbook and colour atlas. 3rd ed. Stuttgart: Schattauer; 2004.
  • 5. Andersen K, Andersen BB, Pakkenberg B. Stereological quantification of the cerebellum in patients with Alzheimer's disease. Neurobiol Aging 2012;33(1):197. e11-. 197. e20.
  • 6. Thomann PA, Schläfer C, Seidl U, Dos Santos V, Essig M, Schröder J. The cerebellum in mild cognitive impairment and Alzheimer’s disease–a structural MRI study. J Psychiatr Res 2008;42(14):1198-1202.
  • 7. Thames RA, Robertson ID, Flegel T, Henke D, O'BRIEN DP, Coates JR, et al. Development of a morphometric magnetic resonance image parameter suitable for distinguishing between normal dogs and dogs with cerebellar atrophy. Vet Radiol Ultrasound 2010;51(3):246-253.
  • 8. Jiang Y-Q, Wang X-L, Cao X-H, Ye Z-Y, Li L, Cai W-Q. Increased heat shock transcription factor 1 in the cerebellum reverses the deficiency of Purkinje cells in Alzheimer's disease. Brain Res 2013;1519:105-111.
  • 9. Sarna JR, Hawkes R. Patterned Purkinje cell death in the cerebellum. Prog Neurobiol 2003;70(6):473-507.
  • 10. Hoogendam YY, van der Geest JN, van der Lijn F, van der Lugt A, Niessen WJ, Krestin GP, et al. Determinants of cerebellar and cerebral volume in the general elderly population. Neurobiol Aging 2012;33(12):2774-2781.
  • 11. Murray SJ, Mitchell NL. The translational benefits of sheep as large animal models of human neurological disorders. Front Vet Sci 2022;9:1-12.
  • 12. Trovatelli M, Brizzola S, Zani DD, Castellano A, Mangili P, Riva M, et al. Development and in vivo assessment of a novel MRI‐compatible headframe system for the ovine animal model. Int J Med Robot 2021;17(4):1-11.
  • 13. Lee W, Lee SD, Park MY, Foley L, Purcell-Estabrook E, Kim H, et al. Functional and diffusion tensor magnetic resonance imaging of the sheep brain. BMC Vet Res 2015;11(1):1-8.
  • 14. John SE, Lovell TJ, Opie NL, Wilson S, Scordas TC, Wong YT, et al. The ovine motor cortex: a review of functional mapping and cytoarchitecture. Neurosci Biobehav Rev 2017;80:306-315.
  • 15. Simpson S, King JL. Localisation of the motor area in the sheep. Q. J. Exp. Physiol 1911;4(1):53-65.
  • 16. Trovatelli M. Sheep as animal model in minimally invasive neurosurgery in EDEN2020. Ph.D. Thesis, Universita’ Degli Studi Di Milano, Milano; 2020.
  • 17. Gundersen H, Jensen E. The efficiency of systematic sampling in stereology and its prediction. J Microsc 1987;147(3):229-263.
  • 18. Gundersen HJG, Jensen EBV, Kieu K, Nielsen J. The efficiency of systematic sampling in stereology reconsidered. J Microsc 1999;193(3):199-211.
  • 19. Baddeley A. Stereology In: Spatial statistics and digital image analysis. Washington DC: National Research Council; 1991.
  • 20. Sterio DC. The unbiased estimation of number and size of arbitrary particles using the disector. J Microsc 1984;134(2):127-136.s
  • 21. Rilling JK, Insel TR. Evolution of the cerebellum in primates: differences in relative volume among monkeys, apes and humans. Brain Behav Evol 1998;52(6):308-314.
  • 22. Hutton LC, Yan E, Yawno T, Castillo-Melendez M, Hirst JJ, Walker DW. Injury of the developing cerebellum: a brief review of the effects of endotoxin and asphyxial challenges in the late gestation sheep fetus. The Cerebellum 2014;13:777-786.
  • 23. Strackx E, Gantert M, Moers V, van Kooten IA, Rieke R, Hürter H, et al. Increased number of cerebellar granule cells and astrocytes in the internal granule layer in sheep following prenatal intra-amniotic injection of lipopolysaccharide. The Cerebellum 2012;11:132-144.
  • 24. Rees S, Stringer M, Just Y, Hooper SB, Harding R. The vulnerability of the fetal sheep brain to hypoxemia at mid-gestation. Developmental brain research. 1997;103(2):103-118.
  • 25. Guerra‐Pereira ML. Morphology and terminology of the cerebellum of cattle, sheep and goats. Anat Histol Embryol 1977;6(1):1-20.
  • 26. Ballarin C, Povinelli M, Granato A, Panin M, Corain L, Peruffo A, et al. The brain of the domestic Bos taurus: weight, encephalization and cerebellar quotients, and comparison with other domestic and wild Cetartiodactyla. PLoS One 2016;11(4):1-14.
  • 27. Montelli S, Suman M, Corain L, Cozzi B, Peruffo A. Sexually diergic trophic effects of estradiol exposure on developing bovine cerebellar granule cells. Neuroendocrinol 2017;104(1):51-71.
  • 28. Koyun N, Aydinlioğlu A, Aslan K. A morphometric study on dog cerebellum. Neurol Res 2011;33(2):220-224.
  • 29. Grigorian R, Prigarina E, Oleinik T, Karelina T. Functional role of cerebellar Purkinje cells in ontogenesis of postural-motor reactions in mature-and immature-born mammals. J Evol Biochem Physiol 2003;39:691-701.
  • 30. Ruela C, Matos-Lima L, Sobrinho-Simões M, Paula-Barbosa M. Comparative morphometric study of cerebellar neurons. Cells Tissues Organs. 1980;106(2):270-275.
  • 31. Harvey R, Napper R. Quantitative study of granule and Purkinje cells in the cerebellar cortex of the rat. J Comp Neurol 1988;274(2):151-157.
  • 32. Larsen JO, Skalicky M, Viidik A. Does long‐term physical exercise counteract age‐related Purkinje cell loss? A stereological study of rat cerebellum. J Comp Neurol 2000;428(2):213-222.
  • 33. Sørensen FW, Larsen JO, Eide R, Schiønning JD. Neuron loss in cerebellar cortex of rats exposed to mercury vapor: a stereological study. Acta Neuropathol 2000;100:95-100.
  • 34. Kielar C, Sawiak SJ, Navarro Negredo P, Tse DH, Morton AJ. Tensor-based morphometry and stereology reveal brain pathology in the complexin1 knockout mouse. PLoS One 2012;7(2):1-11
  • 35. Akosman M, Gocmen-Mas N, Karabekir H. Estimation of Purkinje cell quantification and volumetry in the cerebellum using a stereological technique. Folia Morphol 2011;70(4):240-244.
  • 36. Selçuk ML, Tıpırdamaz S. A morphological and stereological study on brain, cerebral hemispheres and cerebellum of New Zealand rabbits. Anat. Histol. Embryol 2020;49(1):90-96.
  • 37. Jelsing J, Gundersen HJG, Nielsen R, Hemmingsen R, Pakkenberg B. The postnatal development of cerebellar Purkinje cells in the Göttingen minipig estimated with a new stereological sampling technique–the vertical bar fractionator. J Anat 2006;209(3):321-331.
  • 38. Sadeghinezhad J, Aghabalazadeh Asl M, Saeidi A, De Silva M. Morphometrical study of the cat cerebellum using unbiased design‐based stereology. Anat Histol Embryol 2020;49(6):788-797.
  • 39. Tunç AT, Turgut M, Aslan H, Sahin B, Yurtseven ME, Kaplan S. Neonatal pinealectomy induces Purkinje cell loss in the cerebellum of the chick: a stereological study. Brain Res 2006;1067(1):95-102.
  • 40. Shahramian I, Heidari MSZ. Volumetry of brain of rat following methadone and buprenorphine administration. Int J Pharmacol 2006;2(2):253-255.
  • 41. Zarow C, Kim T-S, Singh M, Chui H. A standardized method for brain-cutting suitable for both stereology and MRI-brain co-registration. J Neurosci Methods 2004;139(2):209-215.
  • 42. Oto Ç, Hazıroğlu RM. Macro-anatomical investigation of encephalon in donkey. Vet J Ankara Univ. 2009;56(3):159-164.
  • 43. Tompsett DH. Anatomical techniques. 2nd ed. Edinburg and London: E&S Livingstone; 1970.
  • 44. Azevedo FA, Carvalho LH, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled‐up primate brain. J Comp Neurol 2009;513(5):532-514.
  • 45. Herculano-Houzel S. Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat 2010;4:1-8.
  • 46. Gundersen H, Bendtsen TF, Korbo L, Marcussen N, Møller A, Nielsen K, et al. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Apmis 1988;96(1‐6):379-394.
  • 47. Canan S, Şahin B, Odacı E, Bünyami Ü, Aslan H, Bilgiç S, et al. Toplam hacim, hacim yoğunluğu ve hacim oranlarının hesaplanmasında kullanılan bir stereolojik yöntem: Cavalieri prensibi. T Klin J Med Sci 2002;22(1):7-14.
  • 48. Howard CV, Reed M. Unbiased Stereology: Three-Dimensional Measurement in Microscopy. 2nd ed. New York, USA: Taylor & Francis; 2004.
  • 49. NAV. Nomina Anatomica Veterinaria. 6th ed. Hannover, Ghent, Columbia, MO, Rio de Janerio: International Committee on Veterinary Gross Anatomical Nomenclature; 2017.
  • 50. Quester R, Schröder. The shrinkage of the human brain stem during formalin fixation and embedding in paraffin. J Neurosci Methods 1997;75(1): 81-89.
  • 51. D’Arceuil H, de Crespigny A. The effects of brain tissue decomposition on diffusion tensor imaging and tractography. Neuroimage 2007;36(1);64-68.

Volumetric calculation of cerebellum in Akkaraman sheep and Hair goat using Cavalieri’s principle

Year 2023, Volume: 94 Issue: 2, 144 - 155, 15.06.2023
https://doi.org/10.33188/vetheder.1284279

Abstract

The aim of this study is to calculate the cerebellum volume in Akkaraman sheep and Hair goat using the Cavalieri's principle. Cerebellum of 12 healthy 1-2 year old male animals (6 sheep and 6 goats) were used in the study. The weight of the cerebellum separated from the rhombencephalon was calculated with a sensitive electronic balance, and its volume was calculated with Archimedes' principle. In the volume measurement to be made with Cavalieri's principle, the cerebellum was blocked with 8% agar to prevent tissue loss during slicing. The stained sections were scanned with a horizontal scanner at 600 dpi resolution. Gray matter and white matter volume were calculated separately by dropping the point counting grid on cross sections in ImageJ software. Cerebellum weight was calculated as 11.6 gr in sheep and 12.55 gr in goats. The ratio of cerebellum weight to total brain weight was calculated as 0.10 in both species. It was observed that the cerebellum weighs an average of 9.8% of the total brain weight in sheep. In the goat, it was observed that the cerebellum constituted 10.11% of the brain. Gray matter and white matter volumes were calculated as 6.75 ml and 3.36 ml in sheep, respectively. In the goat, the gray matter and white matter volumes were measured as 6.80 ml and 3.82 ml, respectively. Total cerebellum volume was found to be 10.14 ml and 10.65 ml in sheep and goats, respectively. In sheep, 65.55% of the cerebellum volume consisted of gray matter and 33.08% of white matter. In goats, 63.88% of the cerebellum consisted of gray matter and 35.85% of white matter. No statistical difference was observed in the volume measurement results obtained in both species (p>0.05). In recent years, there has been an increase in neurodegenerative disease models in farm animals. These diseases can cause changes in the volume of the cerebellum. In this context, it is thought that the volume values obtained from healthy sheep and goat cerebellum in the current study will be important for future studies

References

  • 1. Dyce KM, Sack WO, Wensing CJG. Textbook of veterinary anatomy. 4th ed. China: Saunder Elsevier; 2010.
  • 2. Dursun N. Veteriner anatomi III. 7th ed. Ankara: Medisan Yayınevi; 2008.
  • 3. Dayan O, Demiraslan Y. Veteriner sistematik anatomi. 1st ed. Ankara: Nobel Tıp Kitabevleri; 2021.
  • 4. König HE, Liebich HG, Cerveny C. Veterinary anatomy of domestic mammals textbook and colour atlas. 3rd ed. Stuttgart: Schattauer; 2004.
  • 5. Andersen K, Andersen BB, Pakkenberg B. Stereological quantification of the cerebellum in patients with Alzheimer's disease. Neurobiol Aging 2012;33(1):197. e11-. 197. e20.
  • 6. Thomann PA, Schläfer C, Seidl U, Dos Santos V, Essig M, Schröder J. The cerebellum in mild cognitive impairment and Alzheimer’s disease–a structural MRI study. J Psychiatr Res 2008;42(14):1198-1202.
  • 7. Thames RA, Robertson ID, Flegel T, Henke D, O'BRIEN DP, Coates JR, et al. Development of a morphometric magnetic resonance image parameter suitable for distinguishing between normal dogs and dogs with cerebellar atrophy. Vet Radiol Ultrasound 2010;51(3):246-253.
  • 8. Jiang Y-Q, Wang X-L, Cao X-H, Ye Z-Y, Li L, Cai W-Q. Increased heat shock transcription factor 1 in the cerebellum reverses the deficiency of Purkinje cells in Alzheimer's disease. Brain Res 2013;1519:105-111.
  • 9. Sarna JR, Hawkes R. Patterned Purkinje cell death in the cerebellum. Prog Neurobiol 2003;70(6):473-507.
  • 10. Hoogendam YY, van der Geest JN, van der Lijn F, van der Lugt A, Niessen WJ, Krestin GP, et al. Determinants of cerebellar and cerebral volume in the general elderly population. Neurobiol Aging 2012;33(12):2774-2781.
  • 11. Murray SJ, Mitchell NL. The translational benefits of sheep as large animal models of human neurological disorders. Front Vet Sci 2022;9:1-12.
  • 12. Trovatelli M, Brizzola S, Zani DD, Castellano A, Mangili P, Riva M, et al. Development and in vivo assessment of a novel MRI‐compatible headframe system for the ovine animal model. Int J Med Robot 2021;17(4):1-11.
  • 13. Lee W, Lee SD, Park MY, Foley L, Purcell-Estabrook E, Kim H, et al. Functional and diffusion tensor magnetic resonance imaging of the sheep brain. BMC Vet Res 2015;11(1):1-8.
  • 14. John SE, Lovell TJ, Opie NL, Wilson S, Scordas TC, Wong YT, et al. The ovine motor cortex: a review of functional mapping and cytoarchitecture. Neurosci Biobehav Rev 2017;80:306-315.
  • 15. Simpson S, King JL. Localisation of the motor area in the sheep. Q. J. Exp. Physiol 1911;4(1):53-65.
  • 16. Trovatelli M. Sheep as animal model in minimally invasive neurosurgery in EDEN2020. Ph.D. Thesis, Universita’ Degli Studi Di Milano, Milano; 2020.
  • 17. Gundersen H, Jensen E. The efficiency of systematic sampling in stereology and its prediction. J Microsc 1987;147(3):229-263.
  • 18. Gundersen HJG, Jensen EBV, Kieu K, Nielsen J. The efficiency of systematic sampling in stereology reconsidered. J Microsc 1999;193(3):199-211.
  • 19. Baddeley A. Stereology In: Spatial statistics and digital image analysis. Washington DC: National Research Council; 1991.
  • 20. Sterio DC. The unbiased estimation of number and size of arbitrary particles using the disector. J Microsc 1984;134(2):127-136.s
  • 21. Rilling JK, Insel TR. Evolution of the cerebellum in primates: differences in relative volume among monkeys, apes and humans. Brain Behav Evol 1998;52(6):308-314.
  • 22. Hutton LC, Yan E, Yawno T, Castillo-Melendez M, Hirst JJ, Walker DW. Injury of the developing cerebellum: a brief review of the effects of endotoxin and asphyxial challenges in the late gestation sheep fetus. The Cerebellum 2014;13:777-786.
  • 23. Strackx E, Gantert M, Moers V, van Kooten IA, Rieke R, Hürter H, et al. Increased number of cerebellar granule cells and astrocytes in the internal granule layer in sheep following prenatal intra-amniotic injection of lipopolysaccharide. The Cerebellum 2012;11:132-144.
  • 24. Rees S, Stringer M, Just Y, Hooper SB, Harding R. The vulnerability of the fetal sheep brain to hypoxemia at mid-gestation. Developmental brain research. 1997;103(2):103-118.
  • 25. Guerra‐Pereira ML. Morphology and terminology of the cerebellum of cattle, sheep and goats. Anat Histol Embryol 1977;6(1):1-20.
  • 26. Ballarin C, Povinelli M, Granato A, Panin M, Corain L, Peruffo A, et al. The brain of the domestic Bos taurus: weight, encephalization and cerebellar quotients, and comparison with other domestic and wild Cetartiodactyla. PLoS One 2016;11(4):1-14.
  • 27. Montelli S, Suman M, Corain L, Cozzi B, Peruffo A. Sexually diergic trophic effects of estradiol exposure on developing bovine cerebellar granule cells. Neuroendocrinol 2017;104(1):51-71.
  • 28. Koyun N, Aydinlioğlu A, Aslan K. A morphometric study on dog cerebellum. Neurol Res 2011;33(2):220-224.
  • 29. Grigorian R, Prigarina E, Oleinik T, Karelina T. Functional role of cerebellar Purkinje cells in ontogenesis of postural-motor reactions in mature-and immature-born mammals. J Evol Biochem Physiol 2003;39:691-701.
  • 30. Ruela C, Matos-Lima L, Sobrinho-Simões M, Paula-Barbosa M. Comparative morphometric study of cerebellar neurons. Cells Tissues Organs. 1980;106(2):270-275.
  • 31. Harvey R, Napper R. Quantitative study of granule and Purkinje cells in the cerebellar cortex of the rat. J Comp Neurol 1988;274(2):151-157.
  • 32. Larsen JO, Skalicky M, Viidik A. Does long‐term physical exercise counteract age‐related Purkinje cell loss? A stereological study of rat cerebellum. J Comp Neurol 2000;428(2):213-222.
  • 33. Sørensen FW, Larsen JO, Eide R, Schiønning JD. Neuron loss in cerebellar cortex of rats exposed to mercury vapor: a stereological study. Acta Neuropathol 2000;100:95-100.
  • 34. Kielar C, Sawiak SJ, Navarro Negredo P, Tse DH, Morton AJ. Tensor-based morphometry and stereology reveal brain pathology in the complexin1 knockout mouse. PLoS One 2012;7(2):1-11
  • 35. Akosman M, Gocmen-Mas N, Karabekir H. Estimation of Purkinje cell quantification and volumetry in the cerebellum using a stereological technique. Folia Morphol 2011;70(4):240-244.
  • 36. Selçuk ML, Tıpırdamaz S. A morphological and stereological study on brain, cerebral hemispheres and cerebellum of New Zealand rabbits. Anat. Histol. Embryol 2020;49(1):90-96.
  • 37. Jelsing J, Gundersen HJG, Nielsen R, Hemmingsen R, Pakkenberg B. The postnatal development of cerebellar Purkinje cells in the Göttingen minipig estimated with a new stereological sampling technique–the vertical bar fractionator. J Anat 2006;209(3):321-331.
  • 38. Sadeghinezhad J, Aghabalazadeh Asl M, Saeidi A, De Silva M. Morphometrical study of the cat cerebellum using unbiased design‐based stereology. Anat Histol Embryol 2020;49(6):788-797.
  • 39. Tunç AT, Turgut M, Aslan H, Sahin B, Yurtseven ME, Kaplan S. Neonatal pinealectomy induces Purkinje cell loss in the cerebellum of the chick: a stereological study. Brain Res 2006;1067(1):95-102.
  • 40. Shahramian I, Heidari MSZ. Volumetry of brain of rat following methadone and buprenorphine administration. Int J Pharmacol 2006;2(2):253-255.
  • 41. Zarow C, Kim T-S, Singh M, Chui H. A standardized method for brain-cutting suitable for both stereology and MRI-brain co-registration. J Neurosci Methods 2004;139(2):209-215.
  • 42. Oto Ç, Hazıroğlu RM. Macro-anatomical investigation of encephalon in donkey. Vet J Ankara Univ. 2009;56(3):159-164.
  • 43. Tompsett DH. Anatomical techniques. 2nd ed. Edinburg and London: E&S Livingstone; 1970.
  • 44. Azevedo FA, Carvalho LH, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled‐up primate brain. J Comp Neurol 2009;513(5):532-514.
  • 45. Herculano-Houzel S. Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat 2010;4:1-8.
  • 46. Gundersen H, Bendtsen TF, Korbo L, Marcussen N, Møller A, Nielsen K, et al. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Apmis 1988;96(1‐6):379-394.
  • 47. Canan S, Şahin B, Odacı E, Bünyami Ü, Aslan H, Bilgiç S, et al. Toplam hacim, hacim yoğunluğu ve hacim oranlarının hesaplanmasında kullanılan bir stereolojik yöntem: Cavalieri prensibi. T Klin J Med Sci 2002;22(1):7-14.
  • 48. Howard CV, Reed M. Unbiased Stereology: Three-Dimensional Measurement in Microscopy. 2nd ed. New York, USA: Taylor & Francis; 2004.
  • 49. NAV. Nomina Anatomica Veterinaria. 6th ed. Hannover, Ghent, Columbia, MO, Rio de Janerio: International Committee on Veterinary Gross Anatomical Nomenclature; 2017.
  • 50. Quester R, Schröder. The shrinkage of the human brain stem during formalin fixation and embedding in paraffin. J Neurosci Methods 1997;75(1): 81-89.
  • 51. D’Arceuil H, de Crespigny A. The effects of brain tissue decomposition on diffusion tensor imaging and tractography. Neuroimage 2007;36(1);64-68.
There are 51 citations in total.

Details

Primary Language English
Subjects Veterinary Anatomy and Physiology, Veterinary Surgery
Journal Section RESEARCH ARTICLE
Authors

Sedat Aydoğdu 0000-0002-9354-3519

Ali Koçyiğit 0000-0002-9354-7480

Early Pub Date June 14, 2023
Publication Date June 15, 2023
Submission Date April 16, 2023
Acceptance Date June 9, 2023
Published in Issue Year 2023 Volume: 94 Issue: 2

Cite

Vancouver Aydoğdu S, Koçyiğit A. Volumetric calculation of cerebellum in Akkaraman sheep and Hair goat using Cavalieri’s principle. Vet Hekim Der Derg. 2023;94(2):144-55.

Veteriner Hekimler Derneği Dergisi açık erişimli bir dergi olup, derginin yayın modeli Budapeşte Erişim Girişimi (BOAI) bildirisine dayanmaktadır. Yayınlanan tüm içerik, çevrimiçi ve ücretsiz olarak sunulan Creative Commons CC BY-NC 4.0 lisansı altında lisanslanmıştır. Yazarlar, Veteriner Hekimler Derneği Dergisi'nde yayınlanan eserlerinin telif haklarını saklı tutarlar.


Veteriner Hekimler Derneği / Turkish Veterinary Medical Society