Research Article
BibTex RIS Cite

At, sığır ve domuz 3 boyutlu baskı kafatası modelleri

Year 2024, Volume: 95 Issue: 2, 96 - 103, 15.06.2024
https://doi.org/10.33188/vetheder.1439194

Abstract

Bu çalışmada, veteriner anatomi eğitiminde kullanılan büyük cüsseli hayvan örneği olan at, sığır ve domuz türlerine ait kafatası modellerinin üç boyutlu baskı teknolojisiyle fiziksel olarak oluşturulması ve bu modellerin uygunluğunun anatomik açıdan belirlenmesi amaçlandı. Bu amaçla elde edilen kafatası modelleri üzerindeki anatomik yapılar karşılaştırmalı olarak incelenerek, modellerinin eğitimde kullanılabilirliği yönünden avantaj ve dezavantajları ortaya konuldu. Çalışma için bilgisayarlı tomografi taraması ile elde edilen at, sığır ve domuz kafataslarına ait kesit görüntüleri üzerinden dijital ortamda 3b rekonstrüksiyon ve segmentasyon işlemleri yapılarak baskı alındı. Üretilen 3b plastik replikalar ve organik kafatasları üzerinde karşılaştırmalı olarak anatomik yapılar incelendi. 3b modellerin anatomik uyumluluğu, baskı kalitesi, baskıda oluşan hatalar, avantaj ve dezavantajlar değerlendirildi. Plastik modellerin organik modellerden atta yaklaşık %45, sığırda %55, domuzda %60 daha hafif olduğu görüldü. Ağırlık (g)/baskı süresi (s) oranı at kafatası modellerinde 11,8; sığır modellerinde 12,7; domuz modellerinde 7,4 olarak hesaplandı. Modellerin anatomik doğruluğunun yüksek düzeyde olduğu, önemli anatomik yapıların orjinal kafataslarına uygun biçimde basılabildiği, sadece tarama ve baskı kalitesine bağlı olarak kafatası kemikleri arasındaki bazı dikiş izleri (suturalar) ile 2 mm’den küçük çaptaki deliklerin net olarak görüntülenemediği tespit edildi. Sonuç olarak, elde edilen plastik replikaların hafif olması, düşme, çarpma gibi etkilere karşı daha dayanıklı olması, temizliği, kolay saklanabilir olması, düşük maliyeti, gerektiğinde tekrar basılabilir ve model üzerinde düzeltmeler yapılabilir olması gibi önemli avantajları yanında, anatomik doğruluk açısından da veteriner anatomi eğitiminde kullanılabilir olduğu belirlendi.

References

  • Erdoğuş HB. The importance of medical imaging in surgical applications and the use of three-dimensional anatomical models. UUJFE 2019;27:491–503.
  • Gorham DMQ, Khan M J. Thinking outside of the box: The potential of 3d printing in veterinary medicine. J Vet Sci Technol 2016;7(5):360
  • Özkadif S. Some veterinary anatomical studies using three dimensional reconstruction. Batman Univ Journal of Life Sciences 2015;5:288-295.
  • Huri P, Oto Ç. 3d printing in veterinary medicine. Ankara Univ Vet Fak Derg 2022;69:111-117.
  • Crişan MI, Rennie E, Holland J, Yost K, Nahabedian D, Holt B, Purdoiu R. The advantages of 3D printing for teaching the equine phalanges. Anat Histol Embryol 2018;47: 17.
  • Wölfel I, Zandt E, Weber S, Meyer-lindenberg A, Brühschwein A, Nautrup CP. Learning anatomic osseous structures with the help of multimedia applications. Anat Histol Embryol 2016;45: 95.
  • Bakıcı C, Güvener O, Oto Ç. 3D printing modeling of the digital skeleton of the horse. Journal of Veterinarian Association 2021;92:152-158.
  • Li F, Liu C, Song X, Huan Y, Gao S, Jiang Z. Production of accurate skeletal models of domestic animals using three-dimensional scanning and printing technology. Anat Sci Educ 2018;11:73–80.
  • Thomas DB, Hiscox JD, DixonBJ, Potgieter J. 3D scanning and printing skeletal tissues for anatomy education. J. Anat 2016;229: 473-481.
  • Heck L, Wilson LAB, Evin A, Stange M, Sánchez-Villagra MR. Shape variation and modularity of skull and teeth in domesticated horses and wild equids. Front Zool 2018;15:14.
  • Dursun N. Veterinary anatomy I. 2nd ed. Ankara: Medisan; 1995.
  • Bakıcı C, Akgün RO, Oto C The applicability and efficiency of 3 dimensional printing models of hyoid bone in comparative veterinary anatomy education. Vet Hekim Der Derg 2019;90:71-75.
  • Bakici C, Akgun RO, Özen D, Algin O, Oto C. The volume fraction values of the brain compartments using the Cavalieri principle and a 3T MRI in brachycephalic and mesocephalic dogs. Vet Med (Praha) 2019;64:482-489.
  • Bakıcı C, Akgun RO, Ekım O, Soydal C, Oto C. Volumetric analysis of the cranial and nasal cavity from micro-computed tomography scans in the rabbit. Folia Morphol 2020;79(2):333-338.
  • Tsandev N, Bakıcı C, Vodenicharov A. Evaluation of the compatibility between corrosion casts and 3D reconstruction of pig head arterial system on cone beam computed tomography. Ankara Univ Vet Fak Derg 2022;69:419-424.
  • Ajayi A, Edjomariegwe O, Iselaiye OT. A review of bone preparation techniques for anatomical studies. MJB 2016;3(2):76-80.
  • Comrie ML, Monteith G, Zur Linden A. The accuracy of computed tomography scans for rapid prototyping of canine skulls. Plos one 2019;14:e0214123.
  • Bücking TM, Hill ER, Robertson JL, Maneas E, Plumb AA, Nikitichev DI. From medical imaging data to 3d printed anatomical models. Plos One 2017;12(5):e0178540.
  • Bilal M, Neha S, Shuaishuai C, Florian SH, Hans-Floranz Z, Florian MT. Evaluation of the dimensional accuracy of 3d-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and BJ printing technology" J Clin Med 2020;9:817.
  • Elizabeth G, Peter L, Frank JR, Dimitrios M. Measuring and establishing the accuracy and reproducibility of 3d printed medical models. RadioGraphics 2017;37:1424-1450.
  • Sucuoğlu HS, Boğrekçi I, Demircioğlu P, Gültekin A. The effect of three-dimensional printed infill pattern on structural strength. ECJSE 2018;5(3):785-796.

3d printing of skull models in horse, ox and pig

Year 2024, Volume: 95 Issue: 2, 96 - 103, 15.06.2024
https://doi.org/10.33188/vetheder.1439194

Abstract

In this study, it was aimed to physically create skull models of large-sized animal sample horse, cattle and pig species used in veterinary anatomy education with three-dimensional printing technology and to determine the suitability of these models anatomically. The anatomical structures on the skull models obtained for this purpose were examined comparatively and the advantages and disadvantages of the models in terms of their usability in education were revealed. For the study, 3D reconstruction and segmentation processes were performed digitally on the cross-sectional images of horse, cattle and pig skulls obtained by computed tomography scanning and printed. Anatomical structures were comparatively analyzed on the produced 3d plastic replicas and organic skulls. Anatomical accuracy of the 3d models, printing quality, printing errors, advantages and disadvantages were evaluated. Plastic models were found to be approximately 45% lighter than organic models in horses, 55% lighter in cattle and 60% lighter in pigs. The weight (g)/printing time (s) ratio was calculated as 11.8 for equine skull models, 12.7 for bovine models and 7.4 for porcine models. It was determined that the anatomical accuracy of the models was at a high level, important anatomical structures could be printed in accordance with the original skulls, and only some sutures between the skull bones and holes with a diameter of less than 2 mm could not be clearly visualized due to scanning and printing quality. As a result, it was determined that the plastic replicas obtained can be used in veterinary anatomy education in terms of anatomical accuracy, as well as important advantages such as being lighter, more resistant to effects such as falling, impact, cleaning, easy storage, low cost, reprinting when necessary and making corrections on the model.

References

  • Erdoğuş HB. The importance of medical imaging in surgical applications and the use of three-dimensional anatomical models. UUJFE 2019;27:491–503.
  • Gorham DMQ, Khan M J. Thinking outside of the box: The potential of 3d printing in veterinary medicine. J Vet Sci Technol 2016;7(5):360
  • Özkadif S. Some veterinary anatomical studies using three dimensional reconstruction. Batman Univ Journal of Life Sciences 2015;5:288-295.
  • Huri P, Oto Ç. 3d printing in veterinary medicine. Ankara Univ Vet Fak Derg 2022;69:111-117.
  • Crişan MI, Rennie E, Holland J, Yost K, Nahabedian D, Holt B, Purdoiu R. The advantages of 3D printing for teaching the equine phalanges. Anat Histol Embryol 2018;47: 17.
  • Wölfel I, Zandt E, Weber S, Meyer-lindenberg A, Brühschwein A, Nautrup CP. Learning anatomic osseous structures with the help of multimedia applications. Anat Histol Embryol 2016;45: 95.
  • Bakıcı C, Güvener O, Oto Ç. 3D printing modeling of the digital skeleton of the horse. Journal of Veterinarian Association 2021;92:152-158.
  • Li F, Liu C, Song X, Huan Y, Gao S, Jiang Z. Production of accurate skeletal models of domestic animals using three-dimensional scanning and printing technology. Anat Sci Educ 2018;11:73–80.
  • Thomas DB, Hiscox JD, DixonBJ, Potgieter J. 3D scanning and printing skeletal tissues for anatomy education. J. Anat 2016;229: 473-481.
  • Heck L, Wilson LAB, Evin A, Stange M, Sánchez-Villagra MR. Shape variation and modularity of skull and teeth in domesticated horses and wild equids. Front Zool 2018;15:14.
  • Dursun N. Veterinary anatomy I. 2nd ed. Ankara: Medisan; 1995.
  • Bakıcı C, Akgün RO, Oto C The applicability and efficiency of 3 dimensional printing models of hyoid bone in comparative veterinary anatomy education. Vet Hekim Der Derg 2019;90:71-75.
  • Bakici C, Akgun RO, Özen D, Algin O, Oto C. The volume fraction values of the brain compartments using the Cavalieri principle and a 3T MRI in brachycephalic and mesocephalic dogs. Vet Med (Praha) 2019;64:482-489.
  • Bakıcı C, Akgun RO, Ekım O, Soydal C, Oto C. Volumetric analysis of the cranial and nasal cavity from micro-computed tomography scans in the rabbit. Folia Morphol 2020;79(2):333-338.
  • Tsandev N, Bakıcı C, Vodenicharov A. Evaluation of the compatibility between corrosion casts and 3D reconstruction of pig head arterial system on cone beam computed tomography. Ankara Univ Vet Fak Derg 2022;69:419-424.
  • Ajayi A, Edjomariegwe O, Iselaiye OT. A review of bone preparation techniques for anatomical studies. MJB 2016;3(2):76-80.
  • Comrie ML, Monteith G, Zur Linden A. The accuracy of computed tomography scans for rapid prototyping of canine skulls. Plos one 2019;14:e0214123.
  • Bücking TM, Hill ER, Robertson JL, Maneas E, Plumb AA, Nikitichev DI. From medical imaging data to 3d printed anatomical models. Plos One 2017;12(5):e0178540.
  • Bilal M, Neha S, Shuaishuai C, Florian SH, Hans-Floranz Z, Florian MT. Evaluation of the dimensional accuracy of 3d-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and BJ printing technology" J Clin Med 2020;9:817.
  • Elizabeth G, Peter L, Frank JR, Dimitrios M. Measuring and establishing the accuracy and reproducibility of 3d printed medical models. RadioGraphics 2017;37:1424-1450.
  • Sucuoğlu HS, Boğrekçi I, Demircioğlu P, Gültekin A. The effect of three-dimensional printed infill pattern on structural strength. ECJSE 2018;5(3):785-796.
There are 21 citations in total.

Details

Primary Language English
Subjects Veterinary Anatomy and Physiology
Journal Section RESEARCH ARTICLE
Authors

Çağdaş Oto 0000-0002-2727-3768

Orçun Güvener 0000-0001-7931-187X

Early Pub Date June 12, 2024
Publication Date June 15, 2024
Submission Date February 18, 2024
Acceptance Date May 3, 2024
Published in Issue Year 2024 Volume: 95 Issue: 2

Cite

Vancouver Oto Ç, Güvener O. 3d printing of skull models in horse, ox and pig. Vet Hekim Der Derg. 2024;95(2):96-103.

Veteriner Hekimler Derneği Dergisi (Journal of Turkish Veterinary Medical Society) is an open access publication, and the journal’s publication model is based on Budapest Access Initiative (BOAI) declaration. All published content is licensed under a Creative Commons CC BY-NC 4.0 license, available online and free of charge. Authors retain the copyright of their published work in Veteriner Hekimler Derneği Dergisi (Journal of Turkish Veterinary Medical Society). 

Veteriner Hekimler Derneği / Turkish Veterinary Medical Society