Research Article
BibTex RIS Cite

An Agent Forgotten in the Diagnosis of Calf Diarrhea: Bovine Noroviruses and Molecular Characterization

Year 2023, Volume: 18 Issue: 3, 102 - 106, 20.12.2023

Abstract

The role of viruses in the diarrhea algorithm is very important. In addition, losses due to diarrhea are quite high for calves, and herd control and protection cannot be performed in cases where a rapid etiological diagnosis cannot be made. Group A rotaviruses and coronaviruses, which are the main viral etiological agents of enteric diseases in calves, are frequently detected in these infections. However, the presence/prevalence of other agents in single or mixed infections is still up-to-date and under investigation. Two genetically distinct bovine enteric caliciviruses are known: genogroup III noroviruses (NoVsGIII), which are genetically related to human noroviruses, and neboviruses, which represent a new genus of caliciviruses. In this study, it was aimed to elucidate the role and genotypes of noroviruses (bovine norovirus) in the diarrheal paradigm in calves. In order to determine the presence of norovirus and genogroups, a total of 92 diarrheal stools from calves were included in the study from the collection material in our laboratory. In the study, reverse transcription nested polymerase chain reaction was performed with specific primer pairs. Polymerase chain reaction (PCR) test results were positive in 3 samples (3/92, 3.2%) and
were subjected to sequence analysis. According to the results of bioinformatics analysis, noroviruses are divided into 7 main genogroups in light of recent literature. Among these genogroups, bovine noroviruses were included in genogroup III (GIII). There are also subtypes within GIII. Of the 3 strains identified in our study, 2 were grouped in GIII-2a (TR/ERZ/25 and TR/ELZ/23) and 1 strain was grouped in GIII-2b (TR/ERZ/9). Conducting more comprehensive molecular prevalence studies on noroviruses, focusing on the detected genogroups in vaccine studies to be developed and determining their prevalence, the effects on the pathogenesis and clinical picture should be revealed. Determination of genogroup type profiles in the world and in our country and, if vaccines can be developed, elucidating different genogroup types on protection will be beneficial in diarrhea and norovirus dilemmas.

References

  • 1. Cho YI, Yoon KJ. An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. J Vet Sci. 2014;15(1):1-17. [CrossRef]
  • 2. Asheim LJ, Johnsen JF, Havrevoll Ø, Mejdell CM, Grøndahl AM. The economic effects of suckling and milk feeding to calves in dual purpose dairy and beef farming. Rev Agric Food Environ Stud. 2016;97(4):225-236. [CrossRef]
  • 3. Ryu JH, Shin SU, Choi KS. Molecular surveillance of viral pathogens associated with diarrhea in pre-weaned Korean native calves. Trop Anim Health Prod. 2020;52(4):1811-1820 [CrossRef]
  • 4. Aydın H, Timurkan MO. Buzağı İshallerinde Coronavirusun Nukleoprotein Gen ve Rotavirusun VP7/VP4 Gen Bölgelerinin Kısmi Sekansı ve Filogenetik analizi. Atatürk Üniv Vet Bil Derg. 2018;13(2):211-218. [CrossRef]
  • 5. Alkan F, Timurkan MO, Karayel İ. Kuzey Kıbrıs Türk Cumhuriyeti’nde İshalli Buzağılarda grup A Rotavirus Tespiti ve Moleküler Karakterizasyonu. Kafkas Üniv Vet Fak Derg. 2015;21:127 130.
  • 6. Timurkan MÖ, Alkan F. Identification of rotavirus A strains in small ruminants: first detection of G8P [1] genotypes in sheep in Turkey. Arch Virol. 2020;165(2):425-431. [CrossRef]
  • 7. Timurkan MÖ, Aydın H, Belen S. Erzurum Bölgesinde Sığırlarda Respiratory coronavirus Enfeksiyonunun RT-PCR ile tespiti ve Moleküler Karakterizasyonu. Atatürk Üniversitesi Vet Bil Derg. 2015;10(3):186- 192. [CrossRef]
  • 8. Tråvén M, Axén C, Svensson A, Björkman C, Emanuelson U. Prevalence of bovine Norovirus and Nebovirus and risk factors of infection in Swedish dairy herds. Dairy. 2022;3(1):137-147. [CrossRef]
  • 9. Mattison K, Shukla A, Cook A, et al. Human noroviruses in swine and cattle. Emerg Infect Dis. 2007;13(8):1184-1188. [CrossRef]
  • 10. Mohamed FF, Ktob GKF, Ismaeil MEA, Ali AAH, Goyal SM. Phylogeny of bovine Norovirus in Egypt based on VP2 gene. Int J Vet Sci Med. 2018;6(1):48-52. [CrossRef]
  • 11. Cui Y, Chen X, Yue H, Tang C. First detection and genomic characterization of bovine Norovirus from yak. Pathogens. 2022;11(2):192. [CrossRef]
  • 12. Karayel-Hacioglu I, Alkan F. Molecular characterization of bovine noroviruses and neboviruses in Turkey: detection of recombinant strains. Arch Virol. 2019;164(5):1411-1417. [CrossRef]
  • 13. Pourasgari F, Kaplon J, Sanchooli A, et al. Molecular prevalence of bovine noroviruses and neboviruses in newborn calves in Iran. Arch Virol. 2018;163(5):1271-1277. [CrossRef]
  • 14. Alkan F, Karayel İ, Catella C, et al. Identification of a bovine enteric calicivirus, Kírklareli virus, distantly related to neboviruses, in calves with enteritis in Turkey. J Clin Microbiol. 2015;53(11):3614-3617. [CrossRef]
  • 15. Chhabra P, de Graaf M, Parra GI, et al. Updated classification of Norovirus genogroups and genotypes. J Gen Virol. 2019;100(10):1393- 1406. [CrossRef]
  • 16. Bull RA, Hansman GS, Clancy LE, Tanaka MM, Rawlinson WD, White PA. Norovirus recombination in ORF1/ORF2 overlap. Emerg Infect Dis. 2005;11(7):1079-1085. [CrossRef]
  • 17. Ferragut F, Vega CG, Mauroy A, et al. Molecular detection of bovine noroviruses in Argentinean dairy calves: circulation of a tentative new genotype. Infect Genet Evol. 2016;40:144-150. [CrossRef]
  • 18. Wang Y, Yue H, Tang C. Prevalence and complete genome of bovine Norovirus with novel VP1 genotype in calves in China. Sci Rep. 2019;9(1):12023. [CrossRef]
  • 19. Brunauer M, Roch FF, Conrady B. Prevalence of worldwide neonatal calf diarrhoea caused by bovine rotavirus in combination with Bovine coronavirus, Escherichia coli K99 and Cryptosporidium spp.: a metaanalysis. Animals (Basel). 2021;11(4):1014. [CrossRef]
  • 20. Wei X, Wang W, Dong Z, et al. Detection of infectious agents causing neonatal calf diarrhea on two large dairy farms in Yangxin County, Shandong Province, China. Front Vet Sci. 2020;7:589126. [CrossRef]
  • 21. Dik I, Bulut O, Avci O, et al. Molecular detection and characterization of bovine noroviruses from cattle in Konya, Turkey. Pak Vet J. 2023;43(1):67-72.
  • 22. Turan T, Işıdan H, Atasoy MO, Irehan B. Detection and molecular analysis of bovine enteric Norovirus and Nebovirus in Turkey. J Vet Res. 2018;62(2):129-135. [CrossRef]
  • 23. Yilmaz A, Bostan K, Altan E, et al. Investigations on the frequency of Norovirus contamination of ready-to-eat food items in Istanbul, Turkey, by using real-time reverse transcription PCR. J Food Prot. 2011;74(5):840-843. [CrossRef]
  • 24. Gülaçtı İ, Sözdutmaz İ, Işıdan H. Molecular characterization of the bovine noroviruses from diarrheic calves in Turkey. Turk J Vet Anim Sci. 2016;40:428-433. [CrossRef]
  • 25. Park SJ, Jeong C, Yoon SS, et al. Detection and characterization of bovine coronaviruses in fecal specimens of adult cattle with diarrhea during the warmer seasons. J Clin Microbiol. 2006;44(9):3178-3188. [CrossRef]
  • 26. Hall TA. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nuc Acid Sym Ser. 1999;41:95-98.
  • 27. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-3027.
  • 28. Cho Y-I. Ecology of Calf Diarrhea in Cow-Calf Operations (Graduate Theses and Dissertations). University of Iowa State; 2012.
  • 29. Calderón-Amor J, Gallo C. Dairy calf welfare and factors associated with diarrhea and respiratory disease among Chilean dairy farms. Animals (Basel). 2020;10(7):1115. [CrossRef]
  • 30. Shi Z, Wang W, Xu Z, Zhang X, Lan Y. Genetic and phylogenetic analyses of the first GIII. 2 bovine Norovirus in China. BMC Vet Res. 2019;15(1):311. [CrossRef]
  • 31. Li M, Li K, Lan H, Hao X, Liu Y, Zhou C. Investigation of genotype diversity of 7,804 Norovirus sequences in humans and animals of China. Open Life Sci. 2022;17(1):1429-1435. [CrossRef]
  • 32. Wolf S, Williamson W, Hewitt J, et al. Molecular detection of Norovirus in sheep and pigs in New Zealand farms. Vet Microbiol. 2009;133(1-2):184-189. [CrossRef]
  • 33. Castells M, Cristina J, Colina R. Evolutionary history and spatiotemporal dynamic of GIII Norovirus: from emergence to classification in four genotypes. Transbound Emerg Dis. 2022;69(4):1872-1879. [CrossRef]
  • 34. Kazama S, Miura T, Masago Y, et al. Environmental surveillance of Norovirus genogroups I and II for sensitive detection of epidemic variants. Appl Environ Microbiol. 2017;83(9):e03406-16. [CrossRef]
  • 35. Arowolo KO, Ayolabi CI, Adeleye IA, Lapinski BA, Santos JS, Raboni SM. Genetic diversity of Norovirus in children with acute gastroenteritis in Southwest Nigeria, 2015-2017. Viruses. 2023;15(3):644. [CrossRef]

Buzağı İshallerinde Teşhiste Unutulan Bir Etken: Sığırların Norovirusları ve Moleküler Karakterizasyonu

Year 2023, Volume: 18 Issue: 3, 102 - 106, 20.12.2023

Abstract

İshal algoritması içerisinde virusların rolü oldukça önemlidir. Ayrıca buzağılar için; ishallere bağlı kayıplar oldukça fazla olmakta ve hızlı bir etiyolojik teşhis yapılamadığı durumlarda sürü kontrolü ve korunması gerçe kleşt irile memek tedir . Buzağılarda enterik hastalıkların ana viral etiyolojik ajanlarından olan grup A rotaviruslar ve coronaviruslar bu enfeksiyonlarda sıklıkla tespit edilmektedir. Ancak tekli veya miks enfeksiyonlarda başka etkenlerin varlığı/yaygınlığı da güncelliğini korumakta ve araştırılmaktadır. Genetik olarak farklı iki sığır enterik calicivirusu bilinmektedir: Bunlar genetik olarak insan norovirusları ile ilişkili olan genogrup III norovirusları (NoVsGIII) ve yeni bir calicivirus cinsini temsil eden neboviruslardır. Bu çalışmada buzağılarda ishal paradigması içerinde norovirusların [bovine norovirus (BNoV)] rolü ve genotiplerinin aydınlatılması amaçlanmıştır. Norovirus varlığı ve genogruplarını belirlemek için ishalli buzağılardan toplam 92 adet dışkı örneği çalışmaya dahil edildi. BNoV spesifik nested primerleri kullanılarak RT-nested-PCR gerçekleştirildi.
Polymerase chain reaction sonucu 3 örnekte (3/92, %3.2) pozitiflik tespit edildi ve sekans analizine tabi tutuldu. Biyoinformatik analiz sonuçlarına göre son literatürler ışığında noroviruslar 7 ana genogruba ayrılmaktadır. Bu genogruplar içerisinde de sığır norovirusları genogrup III (GIII) içinde yer almıştır. GIII içerisinde ayrıca alt tipler bulunmaktadır. Çalışmamızda tespit edilen 3 suştan 2’si GIII-2a (TR/ERZ/25 ve TR/ELZ/23) ve 1 suş GIII-2b (TR/ERZ/9) içerisinde gruplanmıştır. Noroviruslar üzerine daha kapsamlı moleküler prevalans çalışması yapılarak yaygınlığının ortaya konulması ve mücadele için geliştirilecek aşı çalışmalarında, tespit edilen genogruplar üzerine yoğunlaşılarak; patogenez ve klinik tablo üzerine etkilerinin ortaya konulması gerekmektedir. Dünyada ve ülkemizde genogrup tip profillerinin belirlenmesi ve eğer aşılar geliştirilebilirse koruyuculuk üzerine farklı genogrup çeşitlerinin
aydınlatılması, ishal ve norovirus ikileminde fayda sağlayacaktır.

References

  • 1. Cho YI, Yoon KJ. An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. J Vet Sci. 2014;15(1):1-17. [CrossRef]
  • 2. Asheim LJ, Johnsen JF, Havrevoll Ø, Mejdell CM, Grøndahl AM. The economic effects of suckling and milk feeding to calves in dual purpose dairy and beef farming. Rev Agric Food Environ Stud. 2016;97(4):225-236. [CrossRef]
  • 3. Ryu JH, Shin SU, Choi KS. Molecular surveillance of viral pathogens associated with diarrhea in pre-weaned Korean native calves. Trop Anim Health Prod. 2020;52(4):1811-1820 [CrossRef]
  • 4. Aydın H, Timurkan MO. Buzağı İshallerinde Coronavirusun Nukleoprotein Gen ve Rotavirusun VP7/VP4 Gen Bölgelerinin Kısmi Sekansı ve Filogenetik analizi. Atatürk Üniv Vet Bil Derg. 2018;13(2):211-218. [CrossRef]
  • 5. Alkan F, Timurkan MO, Karayel İ. Kuzey Kıbrıs Türk Cumhuriyeti’nde İshalli Buzağılarda grup A Rotavirus Tespiti ve Moleküler Karakterizasyonu. Kafkas Üniv Vet Fak Derg. 2015;21:127 130.
  • 6. Timurkan MÖ, Alkan F. Identification of rotavirus A strains in small ruminants: first detection of G8P [1] genotypes in sheep in Turkey. Arch Virol. 2020;165(2):425-431. [CrossRef]
  • 7. Timurkan MÖ, Aydın H, Belen S. Erzurum Bölgesinde Sığırlarda Respiratory coronavirus Enfeksiyonunun RT-PCR ile tespiti ve Moleküler Karakterizasyonu. Atatürk Üniversitesi Vet Bil Derg. 2015;10(3):186- 192. [CrossRef]
  • 8. Tråvén M, Axén C, Svensson A, Björkman C, Emanuelson U. Prevalence of bovine Norovirus and Nebovirus and risk factors of infection in Swedish dairy herds. Dairy. 2022;3(1):137-147. [CrossRef]
  • 9. Mattison K, Shukla A, Cook A, et al. Human noroviruses in swine and cattle. Emerg Infect Dis. 2007;13(8):1184-1188. [CrossRef]
  • 10. Mohamed FF, Ktob GKF, Ismaeil MEA, Ali AAH, Goyal SM. Phylogeny of bovine Norovirus in Egypt based on VP2 gene. Int J Vet Sci Med. 2018;6(1):48-52. [CrossRef]
  • 11. Cui Y, Chen X, Yue H, Tang C. First detection and genomic characterization of bovine Norovirus from yak. Pathogens. 2022;11(2):192. [CrossRef]
  • 12. Karayel-Hacioglu I, Alkan F. Molecular characterization of bovine noroviruses and neboviruses in Turkey: detection of recombinant strains. Arch Virol. 2019;164(5):1411-1417. [CrossRef]
  • 13. Pourasgari F, Kaplon J, Sanchooli A, et al. Molecular prevalence of bovine noroviruses and neboviruses in newborn calves in Iran. Arch Virol. 2018;163(5):1271-1277. [CrossRef]
  • 14. Alkan F, Karayel İ, Catella C, et al. Identification of a bovine enteric calicivirus, Kírklareli virus, distantly related to neboviruses, in calves with enteritis in Turkey. J Clin Microbiol. 2015;53(11):3614-3617. [CrossRef]
  • 15. Chhabra P, de Graaf M, Parra GI, et al. Updated classification of Norovirus genogroups and genotypes. J Gen Virol. 2019;100(10):1393- 1406. [CrossRef]
  • 16. Bull RA, Hansman GS, Clancy LE, Tanaka MM, Rawlinson WD, White PA. Norovirus recombination in ORF1/ORF2 overlap. Emerg Infect Dis. 2005;11(7):1079-1085. [CrossRef]
  • 17. Ferragut F, Vega CG, Mauroy A, et al. Molecular detection of bovine noroviruses in Argentinean dairy calves: circulation of a tentative new genotype. Infect Genet Evol. 2016;40:144-150. [CrossRef]
  • 18. Wang Y, Yue H, Tang C. Prevalence and complete genome of bovine Norovirus with novel VP1 genotype in calves in China. Sci Rep. 2019;9(1):12023. [CrossRef]
  • 19. Brunauer M, Roch FF, Conrady B. Prevalence of worldwide neonatal calf diarrhoea caused by bovine rotavirus in combination with Bovine coronavirus, Escherichia coli K99 and Cryptosporidium spp.: a metaanalysis. Animals (Basel). 2021;11(4):1014. [CrossRef]
  • 20. Wei X, Wang W, Dong Z, et al. Detection of infectious agents causing neonatal calf diarrhea on two large dairy farms in Yangxin County, Shandong Province, China. Front Vet Sci. 2020;7:589126. [CrossRef]
  • 21. Dik I, Bulut O, Avci O, et al. Molecular detection and characterization of bovine noroviruses from cattle in Konya, Turkey. Pak Vet J. 2023;43(1):67-72.
  • 22. Turan T, Işıdan H, Atasoy MO, Irehan B. Detection and molecular analysis of bovine enteric Norovirus and Nebovirus in Turkey. J Vet Res. 2018;62(2):129-135. [CrossRef]
  • 23. Yilmaz A, Bostan K, Altan E, et al. Investigations on the frequency of Norovirus contamination of ready-to-eat food items in Istanbul, Turkey, by using real-time reverse transcription PCR. J Food Prot. 2011;74(5):840-843. [CrossRef]
  • 24. Gülaçtı İ, Sözdutmaz İ, Işıdan H. Molecular characterization of the bovine noroviruses from diarrheic calves in Turkey. Turk J Vet Anim Sci. 2016;40:428-433. [CrossRef]
  • 25. Park SJ, Jeong C, Yoon SS, et al. Detection and characterization of bovine coronaviruses in fecal specimens of adult cattle with diarrhea during the warmer seasons. J Clin Microbiol. 2006;44(9):3178-3188. [CrossRef]
  • 26. Hall TA. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nuc Acid Sym Ser. 1999;41:95-98.
  • 27. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-3027.
  • 28. Cho Y-I. Ecology of Calf Diarrhea in Cow-Calf Operations (Graduate Theses and Dissertations). University of Iowa State; 2012.
  • 29. Calderón-Amor J, Gallo C. Dairy calf welfare and factors associated with diarrhea and respiratory disease among Chilean dairy farms. Animals (Basel). 2020;10(7):1115. [CrossRef]
  • 30. Shi Z, Wang W, Xu Z, Zhang X, Lan Y. Genetic and phylogenetic analyses of the first GIII. 2 bovine Norovirus in China. BMC Vet Res. 2019;15(1):311. [CrossRef]
  • 31. Li M, Li K, Lan H, Hao X, Liu Y, Zhou C. Investigation of genotype diversity of 7,804 Norovirus sequences in humans and animals of China. Open Life Sci. 2022;17(1):1429-1435. [CrossRef]
  • 32. Wolf S, Williamson W, Hewitt J, et al. Molecular detection of Norovirus in sheep and pigs in New Zealand farms. Vet Microbiol. 2009;133(1-2):184-189. [CrossRef]
  • 33. Castells M, Cristina J, Colina R. Evolutionary history and spatiotemporal dynamic of GIII Norovirus: from emergence to classification in four genotypes. Transbound Emerg Dis. 2022;69(4):1872-1879. [CrossRef]
  • 34. Kazama S, Miura T, Masago Y, et al. Environmental surveillance of Norovirus genogroups I and II for sensitive detection of epidemic variants. Appl Environ Microbiol. 2017;83(9):e03406-16. [CrossRef]
  • 35. Arowolo KO, Ayolabi CI, Adeleye IA, Lapinski BA, Santos JS, Raboni SM. Genetic diversity of Norovirus in children with acute gastroenteritis in Southwest Nigeria, 2015-2017. Viruses. 2023;15(3):644. [CrossRef]

Details

Primary Language English
Subjects Veterinary Virology
Journal Section Research Articles
Authors

Mehmet Ozkan TİMURKAN

Publication Date December 20, 2023
Published in Issue Year 2023 Volume: 18 Issue: 3

Cite

APA TİMURKAN, M. O. (2023). An Agent Forgotten in the Diagnosis of Calf Diarrhea: Bovine Noroviruses and Molecular Characterization. Veterinary Sciences and Practices, 18(3), 102-106.
AMA TİMURKAN MO. An Agent Forgotten in the Diagnosis of Calf Diarrhea: Bovine Noroviruses and Molecular Characterization. Veterinary Sciences and Practices. December 2023;18(3):102-106.
Chicago TİMURKAN, Mehmet Ozkan. “An Agent Forgotten in the Diagnosis of Calf Diarrhea: Bovine Noroviruses and Molecular Characterization”. Veterinary Sciences and Practices 18, no. 3 (December 2023): 102-6.
EndNote TİMURKAN MO (December 1, 2023) An Agent Forgotten in the Diagnosis of Calf Diarrhea: Bovine Noroviruses and Molecular Characterization. Veterinary Sciences and Practices 18 3 102–106.
IEEE M. O. TİMURKAN, “An Agent Forgotten in the Diagnosis of Calf Diarrhea: Bovine Noroviruses and Molecular Characterization”, Veterinary Sciences and Practices, vol. 18, no. 3, pp. 102–106, 2023.
ISNAD TİMURKAN, Mehmet Ozkan. “An Agent Forgotten in the Diagnosis of Calf Diarrhea: Bovine Noroviruses and Molecular Characterization”. Veterinary Sciences and Practices 18/3 (December 2023), 102-106.
JAMA TİMURKAN MO. An Agent Forgotten in the Diagnosis of Calf Diarrhea: Bovine Noroviruses and Molecular Characterization. Veterinary Sciences and Practices. 2023;18:102–106.
MLA TİMURKAN, Mehmet Ozkan. “An Agent Forgotten in the Diagnosis of Calf Diarrhea: Bovine Noroviruses and Molecular Characterization”. Veterinary Sciences and Practices, vol. 18, no. 3, 2023, pp. 102-6.
Vancouver TİMURKAN MO. An Agent Forgotten in the Diagnosis of Calf Diarrhea: Bovine Noroviruses and Molecular Characterization. Veterinary Sciences and Practices. 2023;18(3):102-6.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29872