Research Article
BibTex RIS Cite

Evaluation of the EU Aviation Sector’s Progress Towards Net-Zero CO2 Emission by 2050

Year 2025, Volume: 16 Issue: 45, 261 - 277, 28.02.2025
https://doi.org/10.21076/vizyoner.1500869

Abstract

The study examines 31 years of aviation-related CO2 emission data from 1990 to 2021, utilizing advanced modeling techniques such as linear regression and Prophet to anticipate CO2 emissions for the critical years 2030 and 2050. The report digs into each country's performance, assessing their promises to cut or even eliminate carbon emissions in line with the ambitious targets of the European Green Deal. Romania emerges as a noteworthy pioneer, demonstrating a remarkable commitment to decreasing emissions by an average of 47.22% by 2030 and 56.54% by 2050, establishing itself as a vital contributor to carbon neutrality. On the other hand, Luxembourg, Poland, and Spain are recognized as countries that deviate considerably from the established targets, raising worries about their capacity to reach the ambitious goals set by the European Green Deal. The study not only gives insights into expected CO2 emission trajectories but also helps our knowledge of the obstacles and possibilities each nation has in achieving the carbon-neutral ambitions described in the European Green Deal.

References

  • Aguilera, H., Guardiola-Albert, C., Naranjo-Fernández, N., & Kohfahl, C. (2019). Towards flexible groundwater-level prediction for adaptive water management: Using Facebook’s Prophet forecasting approach. Hydrological Sciences Journal, 64(12), 1504–1518. https://doi.org/10.1080/02626667.2019.1651933
  • Arslan, S. (2022). A hybrid forecasting model using LSTM and Prophet for energy consumption with decomposition of time series data. PeerJ Computer Science, 8, e1001. https://doi.org/10.7717/peerj-cs.1001
  • Claeys, G., Tagliapietra, S., & Zachmann, G. (2019). How to make the European Green Deal work. Bruegel. https://www.jstor.org/stable/resrep28626
  • Dincer, I., & Abu-Rayash, A. (2020). Chapter 1—Fundamental aspects of energy, environment, and sustainability. In I. Dincer & A. Abu-Rayash (Eds.), Energy Sustainability (p. 1-18). Academic Press. https://doi.org/10.1016/B978-0-12-819556-7.00001-2
  • European Environment Agency (EEA). (2023). EEA greenhouse gases—Data viewer—European Environment Agency. Retrieved December 18, 2023 from https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer
  • Fuglestvedt, J., Berntsen, T., Myhre, G., Rypdal, K., & Skeie, R. B. (2008). Climate forcing from the transport sectors. Proceedings of the National Academy of Sciences, 105(2), 454–458. https://doi.org/10.1073/pnas.0702958104
  • Fumo, N., & Rafe Biswas, M. A. (2015). Regression analysis for prediction of residential energy consumption. Renewable and Sustainable Energy Reviews, 47, 332–343. https://doi.org/10.1016/j.rser.2015.03.035
  • Hosseini, S. M., Saifoddin, A., Shirmohammadi, R., & Aslani, A. (2019). Forecasting of CO2 emissions in Iran based on time series and regression analysis. Energy Reports, 5, 619–631. https://doi.org/10.1016/j.egyr.2019.05.004
  • ICAO Environmental Report 2022. (2022). ICAO Environmental Report 2022. Retrieved December 18, 2023 from https://www.icao.int/environmental-protection/Pages/envrep2022.aspx
  • Kurniawan, J. S., & Khardi, S. (2011). Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports. Environmental Impact Assessment Review, 31(3), 240–252. https://doi.org/10.1016/j.eiar.2010.09.001
  • Lee, D. S., Fahey, D. W., Forster, P. M., Newton, P. J., Wit, R. C. N., Lim, L. L., Owen, B., & Sausen, R. (2009). Aviation and global climate change in the 21st century. Atmospheric Environment, 43(22–23), 3520–3537. https://doi.org/10.1016/j.atmosenv.2009.04.024
  • Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., Doherty, S. J., Freeman, S., Forster, P. M., Fuglestvedt, J., Gettelman, A., De León, R. R., Lim, L. L., Lund, M. T., Millar, R. J., Owen, B., Penner, J. E., Pitari, G., Prather, M. J., … Wilcox, L. J. (2021). The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment, 244, 117834. https://doi.org/10.1016/j.atmosenv.2020.117834
  • Masiol, M., & Harrison, R. M. (2014). Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmospheric Environment (Oxford, England: 1994), 95, 409–455. https://doi.org/10.1016/j.atmosenv.2014.05.070
  • Primandari, A. H., Thalib, A. K., & Kesumawati, A. (2022). Analysis of Changes in Atmospheric CO2 Emissions Using Prophet Facebook. Enthusiastic : International Journal of Applied Statistics and Data Science, 1–9. https://doi.org/10.20885/enthusiastic.vol2.iss1.art1
  • Rafferty, G. (2021). Forecasting Time Series Data with Facebook Prophet. https://www.packtpub.com/product/forecasting-time-series-data-with-facebook-prophet/9781800568532
  • Satrio, C., Darmawan, W., Nadia, B., & Hanafiah, N. (2021). Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET. Procedia Computer Science, 179, 524–532. https://doi.org/10.1016/j.procs.2021.01.036
  • Schmitt, D., & Gollnick, V. (2016). The Air Transport System. In D. Schmitt & V. Gollnick (Ed.), Air transport system (p. 1–17). Springer. https://doi.org/10.1007/978-3-7091-1880-1_1
  • Siddiqui, O., & Dincer, I. (2021). A comparative life cycle assessment of clean aviation fuels. Energy, 234, 121126. https://doi.org/10.1016/j.energy.2021.121126
  • Stefenon, S. F., Seman, L. O., Mariani, V. C., & Coelho, L. dos S. (2023). Aggregating Prophet and Seasonal Trend Decomposition for Time Series Forecasting of Italian Electricity Spot Prices. Energies, 16(3), Article 3. https://doi.org/10.3390/en16031371
  • Undavalli, V., Gbadamosi Olatunde, O. B., Boylu, R., Wei, C., Haeker, J., Hamilton, J., & Khandelwal, B. (2023). Recent advancements in sustainable aviation fuels. Progress in Aerospace Sciences, 136, 100876. https://doi.org/10.1016/j.paerosci.2022.100876
  • Undavalli, V., & Khandelwal, B. (2021). General compositions and alternative aviation fuel approval process (pp. 23–38). https://doi.org/10.1016/B978-0-12-818314-4.00002-9
  • Zeydan, Ö., & Yıldız Şekertekin, Y. (2022). GIS-based determination of Turkish domestic flights emissions. Atmospheric Pollution Research, 13(2), 101299. https://doi.org/10.1016/j.apr.2021.101299

AB Havacılık Sektörünün 2050 Yılına Kadar Net Sıfır CO2 Emisyonuna Yönelik İlerlemesinin Değerlendirilmesi

Year 2025, Volume: 16 Issue: 45, 261 - 277, 28.02.2025
https://doi.org/10.21076/vizyoner.1500869

Abstract

Bu makale, 2030 ve 2050 yıllarına yönelik CO2 emisyon tahminlerini yapmak amacıyla, 1990'dan 2021'e kadar olan 31 yıllık havacılık kaynaklı CO2 emisyon verilerini incelemekte ve doğrusal regresyon ile Prophet gibi ileri modelleme tekniklerini kullanmaktadır. Çalışma, her bir ülkenin performansını değerlendirerek, emisyon azaltma taahhütlerini incelemektedir. Avrupa Yeşil Mutabakatının iddialı hedefleri doğrultusunda karbon emisyonlarının azaltılması hedeflenmektedir. Romanya, emisyonlarını 2030 yılına kadar ortalama %47,22 ve 2050 yılına kadar %56,54 oranında azaltma konusundaki kararlılığı ile öne çıkarak, karbon nötrlüğüne ciddi katkılar sunan bir ülke olarak kendini kanıtlamaktadır. Buna karşılık, Lüksemburg, Polonya ve İspanya, belirlenen hedeflerden önemli ölçüde sapmakta olup, bu ülkelerin Avrupa Yeşil Mutabakatının iddialı hedeflerine ulaşma kapasiteleri hakkında endişeler artmaktadır. Bu çalışma, sadece beklenen CO2 emisyon trendleri hakkında bilgi sağlamakla kalmamakta, aynı zamanda her ülkenin Avrupa Yeşil Mutabakatı çerçevesinde karbon nötr hedeflerine ulaşmada karşılaştığı engeller ve sahip olduğu fırsatlar konusunda da derinlemesine içgörüler sunmaktadır.

References

  • Aguilera, H., Guardiola-Albert, C., Naranjo-Fernández, N., & Kohfahl, C. (2019). Towards flexible groundwater-level prediction for adaptive water management: Using Facebook’s Prophet forecasting approach. Hydrological Sciences Journal, 64(12), 1504–1518. https://doi.org/10.1080/02626667.2019.1651933
  • Arslan, S. (2022). A hybrid forecasting model using LSTM and Prophet for energy consumption with decomposition of time series data. PeerJ Computer Science, 8, e1001. https://doi.org/10.7717/peerj-cs.1001
  • Claeys, G., Tagliapietra, S., & Zachmann, G. (2019). How to make the European Green Deal work. Bruegel. https://www.jstor.org/stable/resrep28626
  • Dincer, I., & Abu-Rayash, A. (2020). Chapter 1—Fundamental aspects of energy, environment, and sustainability. In I. Dincer & A. Abu-Rayash (Eds.), Energy Sustainability (p. 1-18). Academic Press. https://doi.org/10.1016/B978-0-12-819556-7.00001-2
  • European Environment Agency (EEA). (2023). EEA greenhouse gases—Data viewer—European Environment Agency. Retrieved December 18, 2023 from https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer
  • Fuglestvedt, J., Berntsen, T., Myhre, G., Rypdal, K., & Skeie, R. B. (2008). Climate forcing from the transport sectors. Proceedings of the National Academy of Sciences, 105(2), 454–458. https://doi.org/10.1073/pnas.0702958104
  • Fumo, N., & Rafe Biswas, M. A. (2015). Regression analysis for prediction of residential energy consumption. Renewable and Sustainable Energy Reviews, 47, 332–343. https://doi.org/10.1016/j.rser.2015.03.035
  • Hosseini, S. M., Saifoddin, A., Shirmohammadi, R., & Aslani, A. (2019). Forecasting of CO2 emissions in Iran based on time series and regression analysis. Energy Reports, 5, 619–631. https://doi.org/10.1016/j.egyr.2019.05.004
  • ICAO Environmental Report 2022. (2022). ICAO Environmental Report 2022. Retrieved December 18, 2023 from https://www.icao.int/environmental-protection/Pages/envrep2022.aspx
  • Kurniawan, J. S., & Khardi, S. (2011). Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports. Environmental Impact Assessment Review, 31(3), 240–252. https://doi.org/10.1016/j.eiar.2010.09.001
  • Lee, D. S., Fahey, D. W., Forster, P. M., Newton, P. J., Wit, R. C. N., Lim, L. L., Owen, B., & Sausen, R. (2009). Aviation and global climate change in the 21st century. Atmospheric Environment, 43(22–23), 3520–3537. https://doi.org/10.1016/j.atmosenv.2009.04.024
  • Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., Doherty, S. J., Freeman, S., Forster, P. M., Fuglestvedt, J., Gettelman, A., De León, R. R., Lim, L. L., Lund, M. T., Millar, R. J., Owen, B., Penner, J. E., Pitari, G., Prather, M. J., … Wilcox, L. J. (2021). The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment, 244, 117834. https://doi.org/10.1016/j.atmosenv.2020.117834
  • Masiol, M., & Harrison, R. M. (2014). Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmospheric Environment (Oxford, England: 1994), 95, 409–455. https://doi.org/10.1016/j.atmosenv.2014.05.070
  • Primandari, A. H., Thalib, A. K., & Kesumawati, A. (2022). Analysis of Changes in Atmospheric CO2 Emissions Using Prophet Facebook. Enthusiastic : International Journal of Applied Statistics and Data Science, 1–9. https://doi.org/10.20885/enthusiastic.vol2.iss1.art1
  • Rafferty, G. (2021). Forecasting Time Series Data with Facebook Prophet. https://www.packtpub.com/product/forecasting-time-series-data-with-facebook-prophet/9781800568532
  • Satrio, C., Darmawan, W., Nadia, B., & Hanafiah, N. (2021). Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET. Procedia Computer Science, 179, 524–532. https://doi.org/10.1016/j.procs.2021.01.036
  • Schmitt, D., & Gollnick, V. (2016). The Air Transport System. In D. Schmitt & V. Gollnick (Ed.), Air transport system (p. 1–17). Springer. https://doi.org/10.1007/978-3-7091-1880-1_1
  • Siddiqui, O., & Dincer, I. (2021). A comparative life cycle assessment of clean aviation fuels. Energy, 234, 121126. https://doi.org/10.1016/j.energy.2021.121126
  • Stefenon, S. F., Seman, L. O., Mariani, V. C., & Coelho, L. dos S. (2023). Aggregating Prophet and Seasonal Trend Decomposition for Time Series Forecasting of Italian Electricity Spot Prices. Energies, 16(3), Article 3. https://doi.org/10.3390/en16031371
  • Undavalli, V., Gbadamosi Olatunde, O. B., Boylu, R., Wei, C., Haeker, J., Hamilton, J., & Khandelwal, B. (2023). Recent advancements in sustainable aviation fuels. Progress in Aerospace Sciences, 136, 100876. https://doi.org/10.1016/j.paerosci.2022.100876
  • Undavalli, V., & Khandelwal, B. (2021). General compositions and alternative aviation fuel approval process (pp. 23–38). https://doi.org/10.1016/B978-0-12-818314-4.00002-9
  • Zeydan, Ö., & Yıldız Şekertekin, Y. (2022). GIS-based determination of Turkish domestic flights emissions. Atmospheric Pollution Research, 13(2), 101299. https://doi.org/10.1016/j.apr.2021.101299
There are 22 citations in total.

Details

Primary Language English
Subjects Time-Series Analysis, Climate and Water Policies, Air Transportation and Freight Services
Journal Section Research Articles
Authors

Caner İlhan 0009-0008-6515-9465

Aybike Esra Şahin 0000-0003-1829-648X

Publication Date February 28, 2025
Submission Date June 13, 2024
Acceptance Date December 28, 2024
Published in Issue Year 2025 Volume: 16 Issue: 45

Cite

APA İlhan, C., & Şahin, A. E. (2025). Evaluation of the EU Aviation Sector’s Progress Towards Net-Zero CO2 Emission by 2050. Süleyman Demirel Üniversitesi Vizyoner Dergisi, 16(45), 261-277. https://doi.org/10.21076/vizyoner.1500869

570ceb1545981.jpg5bd95eb5f3a21.jpglogo-minik.pngLogo-png-768x897.png