Research Article
BibTex RIS Cite

Hypericum scabrum L.'nin Metanol Ekstresinin Tek Kullanımlık Elektrokimyasal DNA Biyosensörleri ile İncelenmesi.

Year 2023, Volume: 1 Issue: 1, 12 - 24, 12.12.2023

Abstract

Bu çalışmada, halk arasında ülser, konstipasyon, hemoroit, romatizma ve menstrüal hastalıklar gibi rahatsızlıkların tedavisinde kullanılan, yüksek antioksidan aktiviteye sahip Hypericum scabrum L. bitkisine ait metanol ekstresinin nükleik asit molekülü “DNA” ile etkileşimlerinin tayini için Diferansiyel Puls Voltametrisi (DPV) ve Dönüşümlü Voltametri (CV) yöntemleri kullanılarak biyosensör sistemleri tasarlanmıştır. Çalışmada; kalem grafit elektrot, yardımcı elektrot ve referans elektrottan oluşan 3’lü elektrot sistemi kullanılacaktır. Çalışmada ilk olarak bitki ekstresinin elektrokimyasal incelenmesi yapılarak elektroaktivite tayini sağlanmıştır. İkinci kısımda elektrot yüzeyine tutturulan tek zincirli (ssDNA) ve çift zincirli (dsDNA) DNA yapıları ile bitkiden hazırlanan metanol ekstresinin etkileşimi sağlanmıştır. Ekstrede yer alan biyoaktif maddelerin DNA yapılarına etkisinin tayini için, etkileşim öncesi ve sonrasında DNA’nın en aktif bazlarından biri olan ve yaklaşık +1,0 V’da yükseltgenen guanin bazı sinyallerindeki değişim dikkate alınmıştır. Sentetik DNA parçalarının analizleri tamamlandıktan sonra H. scabrum metanol ekstresinin DNA üzerine olan etkisi tasarlanan elektrokimyasal biyosensör ile kısa sürede ve oldukça basit bir şekilde analizlenmiştir. Yapılan çalışmalar sonucunda bitki içeriğinde yer alan biyoaktif maddelerin verdiği yanıtlar arasındaki farklılıklar ve guanin bazının yükseltgenme yanıtındaki farklılıklar DPV tekniği kullanılarak tayin edilmiştir. Tayinde ayrıca metanol ekstresinin yer aldığı düşünülen flavonoitlerin [1, 2] elektrokimyasal olarak yanıtlarının olup olmadığı (aktif olup olmadıkları) elektrokimyasal tayin yöntemlerinden dönüşümlü voltametri tekniği (CV) kullanılarak araştırılmıştır. Deneysel parametrelerdeki farklılıkların (ortam ve pH, madde konsantrasyonu, DNA derişimi vb.) DPV tekniğiyle incelenmesi yapılmıştır.

References

  • [1] I.A. Schepetkin, A.G. Ramstead, L.N. Kirpotina, (2016). Therapeutic potential of polyphenols from Epilobium angustifolium (Fireweed). Phyther Research, 30, 1287–1297.
  • [2] F.T. Gürağaç Dereli, M. Ilhan, E. Sobarzo-Sánchez, E. Akkol, (2020). The investigation of the potential antidepressant-like activity of Xanthium orientale subsp. italicum (Moretti) Greuter in rodents. Journal of Ethnopharmacology, 258, 112914.
  • [3] C.T. Standing, (2020). Kaempferol as a Dietary Anti-Inflammatory Agent: Molecules, 25, 1–12.
  • [4] S. Tajik, M.A. Taher, H. Beitollahi, M. Torkzadeh-Mahani, (2015). Electrochemical determination of the anticancer drug taxol at a ds-DNA modified pencil-graphite electrode and its application as a label-free electrochemical biosensor. Talanta, 134, 60–64.
  • [5] K.P. Devi, D.S. Malar, S.F. Nabavi, (2015). Kaempferol and inflammation: From chemistry to medicine. Pharmacol Research, 99, 1–10.
  • [6] N.K. Janjua, A. Siddiq, A. Yaqub, (2009). Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions. Spectrochim Acta - Part A: Molecular and Biomolecular Spectroscopy, 74, 1135–1137.
  • [7] R.A. Dar, P.K. Brahman, N. Khurana, (2017). Evaluation of antioxidant activity of crocin, podophyllotoxin, and kaempferol by chemical, biochemical, and electrochemical assays. Arabian Journal of Chemistry, 10, S1119–S1128.
  • [8] F. Lyu, M. Pan, S. Patil, (2018). Phenotyping antibiotic resistance with single-cell resolution for the detection of heteroresistance. Sensors Actuators, B Chemical, 270, 396–404.
  • [9] G. Selvolini, H. Subak, B. Taneri, (2021). Chapter 6 - Electrochemiluminescent and photoelectrochemical aptasensors based on quantum dots for mycotoxins and pesticides analysis. In Electroanalytical Applications of Quantum Dot-Based Biosensor, Elsevier, 185-208
  • [10] A. Sanati, M. Jalali, K. Raeissi, (2019). A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Microchimica Acta, 186, 1-22.
  • [11] G. Kizil, M. Kizil, B. Çeken, (2011). Protective ability of ethanol extracts of Hypericum scabrum L. and Hypericum retusum Aucher against protein oxidation and DNA damage. International Journal of Food Properties, 14, 926–940.
  • [12] B. Eslami, S.F. Nabavi, S.M. Nabavi, (2011). Pharmacological activities of Hypericum scabrum L. European Review for Medical and Pharmacological Sciences, 15, 32–37.
  • [13] N. Faraji, A. Ganji, N. Heshami, (2021). Hypolipidemic effects of Hypericum scabrum extract on the serum lipid profile and obesity in high-fat diet-fed rats. Human Antibodies, 29, 55–61.
  • [14] M. Ilhan, A. Battal, B. Kaptaner, ve diğerleri. (2023). Exploring the ameliorative effects of Hypericum scabrum L. on a surgically-induced endometriosis rat model and its phytochemical profiling by LC-MS/MS. Farmacia, 71, 710–721.
  • [15] L. Jiang, S. Numonov, K. Bobakulov, (2015). Phytochemical profiling and evaluation of pharmacological activities of Hypericum scabrum L. Molecules, 20, 11257–11271.
  • [16] B. Baykal, G. Kadikoylu, H. Senturk, (2021). Preparation and characterization of gallic acid-titanium dioxide nanocomposites for biosensing application on voltammetric detection of DNA. Journal of Electroanalytical Chemistry, 892, 1–7.
  • [17] H.E.S. Kara, (2014). Redox mechanism of anticancer drug idarubicin and in-situ evaluation of interaction with DNA using an electrochemical biosensor. Bioelectrochemistry, 99, 17–23.
  • [18] Y. Yardım, (2011). Sensitive Detection of Capsaicin by Adsorptive Stripping Voltammetry at a Boron-Doped Diamond Electrode, Electroanalysis 23.102491–2497.
  • [19] A. Yigit, P.T. Pınar, Y. Akinay, (2021). Nanotube-Boramidic Acid Derivative for Dopamine Sensing. ChemistrySelect, 6, 6302–6313.
  • [20] S. Allahverdiyeva, E. Keskin, P.T. Pınar, (2020). Electroanalytical investigation and determination of hepatitis C antiviral drug ledipasvir at a non-modified boron-doped diamond electrode. Diamond and Related Materials, 108, 107962.
  • [21] Y. Yardım, M. Gulcan, Z. Şenturk. (2013). Determination of vanillin in commercial food products by adsorptive stripping voltammetry using a boron-doped diamond electrode. Food Chemistry, 141, 1821–1827.
  • [22] S. Allahverdiyeva, O. Yunusoğlu, Y. Yardım, Z. Şentürk. (2021). First electrochemical evaluation of favipiravir used as an antiviral option in the treatment of COVID-19: A study of its enhanced voltammetric determination in cationic surfactant media using a boron-doped diamond electrode. Analytica Chimica Acta, 1159, 338418.
  • [23] A.M.O. Brett, M.E. Ghica. (2003). Electrochemical Oxidation of Quercetin. Electroanalysis, 15, 1745–1750.
  • [24] D. Zielińska, L. Nagels, M.K. Piskuła. (2008). Determination of quercetin and its glucosides in onion by electrochemical methods. Analytica Chimica Acta, 617, 22–31.

Investigation of Hypericum Scabrum L.'s Methanol Extract with Disposable Electrochemical DNA Biosensors.

Year 2023, Volume: 1 Issue: 1, 12 - 24, 12.12.2023

Abstract

In this study, a voltammetric sensor was used to determine the interactions of the methanol extract of the plant Hypericum scabrum L., with the nucleic acid molecule "DNA". Hypericum scabrum L., which has high antioxidant activity is also used in the treatment of diseases such as ulcers, constipation, hemorrhoids, rheumatism, and menstrual diseases. Our biosensor system has been designed using differential pulse voltammetry (DPV) and cyclic voltammetry (CV) methods. In the study; A 3-electrode system consisting of a pencil graphite electrode, auxiliary electrode, and reference electrode will be used. In the study, firstly, an electrochemical analysis of the plant extract was performed and electroactivity was determined. In the second part, the single-stranded (ssDNA) and double-stranded (dsDNA) DNA structures were attached to the electrode surface and then, the DNA-modified electrodes were interacted with Hypericum scabrum's methanol extract solutions. To determine the effect of the bioactive substances contained in the extract on DNA structures, the change in guanine oxidation signal, which is one of the most active bases of DNA and is oxidized at approximately +1.0 V, was measured account before and after the interaction. After the analysis of synthetic DNA fragments was completed, the effect of H. scabrum's methanol extract on DNA was analyzed in a short time and in a very simple way with the designed electrochemical biosensor. As a result of the studies, the differences between the responses of the bioactive substances contained in the plant and the differences in the oxidation response of the guanine base were determined using the DPV technique. In the determination, whether the flavonoids [1, 2], which are thought to be included in the methanol extract, have an electrochemical response (whether they are active or not) was investigated using the cyclic voltammetry technique (CV), one of the electrochemical determination methods. Differences in experimental parameters (environment and pH, substance concentration, DNA concentration, etc.) were examined with the DPV technique.

References

  • [1] I.A. Schepetkin, A.G. Ramstead, L.N. Kirpotina, (2016). Therapeutic potential of polyphenols from Epilobium angustifolium (Fireweed). Phyther Research, 30, 1287–1297.
  • [2] F.T. Gürağaç Dereli, M. Ilhan, E. Sobarzo-Sánchez, E. Akkol, (2020). The investigation of the potential antidepressant-like activity of Xanthium orientale subsp. italicum (Moretti) Greuter in rodents. Journal of Ethnopharmacology, 258, 112914.
  • [3] C.T. Standing, (2020). Kaempferol as a Dietary Anti-Inflammatory Agent: Molecules, 25, 1–12.
  • [4] S. Tajik, M.A. Taher, H. Beitollahi, M. Torkzadeh-Mahani, (2015). Electrochemical determination of the anticancer drug taxol at a ds-DNA modified pencil-graphite electrode and its application as a label-free electrochemical biosensor. Talanta, 134, 60–64.
  • [5] K.P. Devi, D.S. Malar, S.F. Nabavi, (2015). Kaempferol and inflammation: From chemistry to medicine. Pharmacol Research, 99, 1–10.
  • [6] N.K. Janjua, A. Siddiq, A. Yaqub, (2009). Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions. Spectrochim Acta - Part A: Molecular and Biomolecular Spectroscopy, 74, 1135–1137.
  • [7] R.A. Dar, P.K. Brahman, N. Khurana, (2017). Evaluation of antioxidant activity of crocin, podophyllotoxin, and kaempferol by chemical, biochemical, and electrochemical assays. Arabian Journal of Chemistry, 10, S1119–S1128.
  • [8] F. Lyu, M. Pan, S. Patil, (2018). Phenotyping antibiotic resistance with single-cell resolution for the detection of heteroresistance. Sensors Actuators, B Chemical, 270, 396–404.
  • [9] G. Selvolini, H. Subak, B. Taneri, (2021). Chapter 6 - Electrochemiluminescent and photoelectrochemical aptasensors based on quantum dots for mycotoxins and pesticides analysis. In Electroanalytical Applications of Quantum Dot-Based Biosensor, Elsevier, 185-208
  • [10] A. Sanati, M. Jalali, K. Raeissi, (2019). A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Microchimica Acta, 186, 1-22.
  • [11] G. Kizil, M. Kizil, B. Çeken, (2011). Protective ability of ethanol extracts of Hypericum scabrum L. and Hypericum retusum Aucher against protein oxidation and DNA damage. International Journal of Food Properties, 14, 926–940.
  • [12] B. Eslami, S.F. Nabavi, S.M. Nabavi, (2011). Pharmacological activities of Hypericum scabrum L. European Review for Medical and Pharmacological Sciences, 15, 32–37.
  • [13] N. Faraji, A. Ganji, N. Heshami, (2021). Hypolipidemic effects of Hypericum scabrum extract on the serum lipid profile and obesity in high-fat diet-fed rats. Human Antibodies, 29, 55–61.
  • [14] M. Ilhan, A. Battal, B. Kaptaner, ve diğerleri. (2023). Exploring the ameliorative effects of Hypericum scabrum L. on a surgically-induced endometriosis rat model and its phytochemical profiling by LC-MS/MS. Farmacia, 71, 710–721.
  • [15] L. Jiang, S. Numonov, K. Bobakulov, (2015). Phytochemical profiling and evaluation of pharmacological activities of Hypericum scabrum L. Molecules, 20, 11257–11271.
  • [16] B. Baykal, G. Kadikoylu, H. Senturk, (2021). Preparation and characterization of gallic acid-titanium dioxide nanocomposites for biosensing application on voltammetric detection of DNA. Journal of Electroanalytical Chemistry, 892, 1–7.
  • [17] H.E.S. Kara, (2014). Redox mechanism of anticancer drug idarubicin and in-situ evaluation of interaction with DNA using an electrochemical biosensor. Bioelectrochemistry, 99, 17–23.
  • [18] Y. Yardım, (2011). Sensitive Detection of Capsaicin by Adsorptive Stripping Voltammetry at a Boron-Doped Diamond Electrode, Electroanalysis 23.102491–2497.
  • [19] A. Yigit, P.T. Pınar, Y. Akinay, (2021). Nanotube-Boramidic Acid Derivative for Dopamine Sensing. ChemistrySelect, 6, 6302–6313.
  • [20] S. Allahverdiyeva, E. Keskin, P.T. Pınar, (2020). Electroanalytical investigation and determination of hepatitis C antiviral drug ledipasvir at a non-modified boron-doped diamond electrode. Diamond and Related Materials, 108, 107962.
  • [21] Y. Yardım, M. Gulcan, Z. Şenturk. (2013). Determination of vanillin in commercial food products by adsorptive stripping voltammetry using a boron-doped diamond electrode. Food Chemistry, 141, 1821–1827.
  • [22] S. Allahverdiyeva, O. Yunusoğlu, Y. Yardım, Z. Şentürk. (2021). First electrochemical evaluation of favipiravir used as an antiviral option in the treatment of COVID-19: A study of its enhanced voltammetric determination in cationic surfactant media using a boron-doped diamond electrode. Analytica Chimica Acta, 1159, 338418.
  • [23] A.M.O. Brett, M.E. Ghica. (2003). Electrochemical Oxidation of Quercetin. Electroanalysis, 15, 1745–1750.
  • [24] D. Zielińska, L. Nagels, M.K. Piskuła. (2008). Determination of quercetin and its glucosides in onion by electrochemical methods. Analytica Chimica Acta, 617, 22–31.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Electrochemistry
Journal Section Research Articles
Authors

Hasret Subak 0000-0003-0100-2529

Mert İlhan 0000-0001-5042-3915

Publication Date December 12, 2023
Submission Date October 13, 2023
Acceptance Date October 25, 2023
Published in Issue Year 2023 Volume: 1 Issue: 1

Cite

APA Subak, H., & İlhan, M. (2023). Hypericum scabrum L.’nin Metanol Ekstresinin Tek Kullanımlık Elektrokimyasal DNA Biyosensörleri ile İncelenmesi. Van Yüzüncü Yıl Üniversitesi Mühendislik Fakültesi Dergisi, 1(1), 12-24.