BibTex RIS Cite

A Hybrid Strategy to Optimize the Search Ellipsoid Dimensions: Case Study from Anomaly No 12A Iron Deposit in Central Iran

Year 2011, Volume: 32 Issue: 1, 141 - 168, 01.02.2011

Abstract

References

  • Arora, J., 2004. Introduction to Optimum De- sign, 2nd ed., London: Elsevier Academic Press.
  • Box, M.J., 1965. A new method of constrained optimization and a comparison with other methods. The Computer Journal 8(1): 42-52.
  • Demuth, H., Beale, M., 2002. Neural Network
  • Toolbox for use with MATLAB, Version
  • 0, User’s Guide, MathWorks.
  • Deutsch, C., 1995. Correcting for Negative We- ights in Ordinary Kriging. J of Compu- ters & Geosciences 22(7): 765-773.
  • De-Vitry, C., 2003. Resource Classification – a Case Study From the Joffre-Hosted Iron Ore of BHP Billiton’s Mount Wha- leback Operations. J of Mining Tech- nology (Trans. Inst. Min. Metall. A) 112:185-196.
  • Froidevaux, R., 1993. Constrained kriging as an estimator of local distribution functions, in Capasso,V., Girone, G., and Posa, D., eds., Proceedings of the International Workshop on Statistics of Spatial Pro- cesses: Theory and Applications. Bari, Italy, p. 106–118.
  • Hagan, MT., Demuth, H.B., Beale, M., 1996. Neural Network Design, Boston: PWS Publishing Company.
  • Journel, A.G., Rao, S.E., 1996. Deriving conditi- onal distributions from ordinary kriging: Stanford Center for Reservoir Forecas- ting (Report No. 9), Stanford, 25 p.
  • Krige, D.G., 1994. An analysis of some essen- tial basic tenets of geostatistics not al- ways practised in ore valuations, in Proceedings Regional APCOM: Com- puter Applications and Operations Re- search in the Minerals Industries, Slo- venia, pp 15-18.
  • Krige, D.G., 1996a. A basic perspective on the roles of classical statistics, data search routines, conditional biases and infor- mation and smoothing effects in ore block valuations, in Proceedings Con- ference on Mining Geostatistics, Kru- ger National Park, South Africa, pp 1-10 (Geostatistical Association of South Af- rica).
  • Ormsbee, L., 1981. Optimization of Hydraulic Networks. In: Proceedings Internatio- nal Symposium on Urban Hydrology, Hydraulics, and Sediment Control, Le- xington, KY.: July 27-30.
  • Rivoirard, J., 1987. Two key parameters when choosing the kriging neighbourhood. J Math Geol, 19:851-856
  • Sinclair, A.J., Blackwell, G.H., 2002. Applied Mi- neral Inventory Estimation. pp. 224-226.
  • Szidarovszky, F., Baafi, E.Y., Kirn, Y.C., 1987. Kriging Without Negative Weights. J of Mathematical Geology. 19(6): 549-559.
  • Tufail, M., Ormsbee, L.E., 2007. A Shuffled Box Complex-Based Optimization Model for Watershed Management, In: Pro- ceedings of the World Environmental and Water Resources Congress, Tam- pa, Florida, USA: May 15-19.
  • Vann, J., Jakson, S., Bertoli, O., 2003. Quantita- tive kriging neighbourhood analysis for the mining geologist — A description of the method with worked case examp- les, 5th International Mining Geology Conference. Pp:1-10.

Örnek Tarama Elipsoid Boyutlarını Optimize eden Melez bir Stratejinin geliştirilmesi: Orta İran'da 12A Nolu Demir Yatağında Örnek bir Uygulama

Year 2011, Volume: 32 Issue: 1, 141 - 168, 01.02.2011

Abstract

Kriglemede kestirim komşuluğunun ya da örnek tarama bölgesinin uygun bir şekilde tanımlanması gerekir. Bu komşuluğun belirlenmesi kestirim değerini oldukça etkiler. Krigleme komşuluğunun belirlenmesinde kullanılan ana kriterler; krigleme varyansı, kestirilmeyen blokların sayısı, negatif ağırlıkların birikimli toplamı ve gerçek blok tenörünün kestirilen blok tenörüne karşı çizilen regresyonun eğimidir. Bu yaklaşımın performansı örnek tarama bölgesinin çapından büyük ölçüde etkilenir. Bu yazı, örnek tarama çapının optimum bir şekilde belirlenmesine yönelik olarak yeni bir yaklaşım geliştiriyor. Deneysel veriler kullanılarak, örnek tarama çapına ilişkin krigleme varyansını, kestirilmeyen blokların sayısını ve krigleme negatif ağırlıklarının birikimli toplamını hassas bir şekilde kestiren bir sinir ağı simulatorü geliştirilmiştir. Simulatör daha sonra sayısal optimizasyon kodunda objektif bir değerlendirici olarak kullanılmıştır. Bu kod, değerlendirme kriterlerinin optimum değerlerine karşılık gelen örnek tarama çapını bulan karmaşık doğrudan tarama yöntemine dayanmaktadır. Algoritmanın bir çok kez çalıştırılması suretiyle çok sayıda çözüm kümesi üretildikten sonra regresyonun eğimi en uygun çöüzümü bulmak amacıyla kullanılmıştır. Önerilen stratejinin uygulanabilirliği ve verimliliğini ortaya koymak amacıyla Orta İran’da Bafgh’de bulunan 12A nolu demir yatağında örnek bir inceleme sunulmuştur

References

  • Arora, J., 2004. Introduction to Optimum De- sign, 2nd ed., London: Elsevier Academic Press.
  • Box, M.J., 1965. A new method of constrained optimization and a comparison with other methods. The Computer Journal 8(1): 42-52.
  • Demuth, H., Beale, M., 2002. Neural Network
  • Toolbox for use with MATLAB, Version
  • 0, User’s Guide, MathWorks.
  • Deutsch, C., 1995. Correcting for Negative We- ights in Ordinary Kriging. J of Compu- ters & Geosciences 22(7): 765-773.
  • De-Vitry, C., 2003. Resource Classification – a Case Study From the Joffre-Hosted Iron Ore of BHP Billiton’s Mount Wha- leback Operations. J of Mining Tech- nology (Trans. Inst. Min. Metall. A) 112:185-196.
  • Froidevaux, R., 1993. Constrained kriging as an estimator of local distribution functions, in Capasso,V., Girone, G., and Posa, D., eds., Proceedings of the International Workshop on Statistics of Spatial Pro- cesses: Theory and Applications. Bari, Italy, p. 106–118.
  • Hagan, MT., Demuth, H.B., Beale, M., 1996. Neural Network Design, Boston: PWS Publishing Company.
  • Journel, A.G., Rao, S.E., 1996. Deriving conditi- onal distributions from ordinary kriging: Stanford Center for Reservoir Forecas- ting (Report No. 9), Stanford, 25 p.
  • Krige, D.G., 1994. An analysis of some essen- tial basic tenets of geostatistics not al- ways practised in ore valuations, in Proceedings Regional APCOM: Com- puter Applications and Operations Re- search in the Minerals Industries, Slo- venia, pp 15-18.
  • Krige, D.G., 1996a. A basic perspective on the roles of classical statistics, data search routines, conditional biases and infor- mation and smoothing effects in ore block valuations, in Proceedings Con- ference on Mining Geostatistics, Kru- ger National Park, South Africa, pp 1-10 (Geostatistical Association of South Af- rica).
  • Ormsbee, L., 1981. Optimization of Hydraulic Networks. In: Proceedings Internatio- nal Symposium on Urban Hydrology, Hydraulics, and Sediment Control, Le- xington, KY.: July 27-30.
  • Rivoirard, J., 1987. Two key parameters when choosing the kriging neighbourhood. J Math Geol, 19:851-856
  • Sinclair, A.J., Blackwell, G.H., 2002. Applied Mi- neral Inventory Estimation. pp. 224-226.
  • Szidarovszky, F., Baafi, E.Y., Kirn, Y.C., 1987. Kriging Without Negative Weights. J of Mathematical Geology. 19(6): 549-559.
  • Tufail, M., Ormsbee, L.E., 2007. A Shuffled Box Complex-Based Optimization Model for Watershed Management, In: Pro- ceedings of the World Environmental and Water Resources Congress, Tam- pa, Florida, USA: May 15-19.
  • Vann, J., Jakson, S., Bertoli, O., 2003. Quantita- tive kriging neighbourhood analysis for the mining geologist — A description of the method with worked case examp- les, 5th International Mining Geology Conference. Pp:1-10.
There are 18 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Marzieh Shademan Khakestar This is me

Hossein Hassani This is me

Saeed Angorani This is me

Publication Date February 1, 2011
Submission Date March 24, 2015
Published in Issue Year 2011 Volume: 32 Issue: 1

Cite

EndNote Khakestar MS, Hassani H, Angorani S (February 1, 2011) Örnek Tarama Elipsoid Boyutlarını Optimize eden Melez bir Stratejinin geliştirilmesi: Orta İran’da 12A Nolu Demir Yatağında Örnek bir Uygulama. Yerbilimleri 32 1 141–168.