Ekonomik
Sipariş ve Üretim Miktarı modelleri stok kontrol modelleri içerisinde en yaygın
kullanılanlarıdır. Basit ve kullanışlı olan bu modeller katı varsayımlar
içerdiğinden gerçek hayatta ortaya çıkan problemlere cevap vermekte yetersiz
kalmaktadır. Bu nedenle, bu modellerde yer alan varsayımlara ilave varsayımlar
eklenmesi yahut mevcut varsayımların gevşetilmesi yoluyla yeni modeller
geliştirilmektedir. Gelen siparişin defolu ürün içermemesi, ödemelerde
gecikmeye ve stoksuzluğa (talebin
ertelenmesine) izin verilmemesi bu modellerde yer alan temel katı
varsayımlardandır. Bu varsayımlar esnetilerek geliştirilen pek çok yeni model
vardır. Bu çalışmada önceki çalışmalardan farklı olarak özellikle stoksuzluk
durumunda talebin bir kısmının bir sonraki dönem karşılanmak üzere ertelenmesi
durumunu defolu ürün ve ödemelerde belli bir süre gecikmeye izin verilmesi
durumu ile birlikte ele alan bir ekonomik sipariş miktarı önerilmektedir.
Çalışma
üç bölümden oluşmaktadır. Birinci bölümde talebin kısmen ertelenmesi yani kısmi
stoksuzluk durumu, gelen siparişin defolu ürün içermesi ve ödemelerde gecikmeye
izin verilmesi durumu açıklanmakta ve bu alanda yapılan çalışmalar
özetlenmektedir. İkinci bölümde karşılanamayan talebin kısmen ertelenmesi
durumunu ele alan yeni bir ekonomik sipariş miktarı modeli önerilmektedir. Bu
bölümde matematiksel modelin elde edilmesi, önceki çalışmaların önerilen
modelin özel durumu olduklarının gösterilmesi ve modelle ilgili nümerik
örnekler yer almaktadır. Üçüncü bölümde ise model parametrelerinin optimal
değerler üzerindeki etkileri duyarlılık analizi ile incelenmektedir. Özellikle
optimal sipariş miktarı ve toplam kârdaki değişimler ayrıntılı olarak ele alınmaktadır.
Analiz sonuçlarına göre talebin erteleme oranının optimal sipariş miktarı ve
toplam kâr üzerinde anlamlı bir etkisinin olmadığı görülmüştür. Diğer taraftan
ödemelerde izin verilen gecikme süresi arttıkça ve defolu ürün oranı azaldıkça
optimal sipariş miktarı azalmış, toplam kâr ise artmıştır.
Abad, P. L. (2001). Optimal price and order size for a reseller under partial backordering. Computers & Operations Research, 28(1), 53-65. doi: Doi 10.1016/S0305-0548(99)00086-6
Abad, P. L. (2003). Optimal price and lot size when the supplier offers a temporary price reduction over an interval. Computers & Operations Research, 30(1), 63-74.
Abad, P. L. (2008). Optimal price and order size under partial backordering incorporating shortage, backorder and lost sale costs. International Journal of Production Economics, 114(1), 179-186. doi: 10.1016/j.ijpe.2008.01.004
Aggarwal, S., & Jaggi, C. (1995). Ordering policies of deteriorating items under permissible delay in payments. Journal of the Operational Research Society, 46(5), 658-662.
Cárdenas-Barrón, L. E. (2000). Observation on:" Economic production quantity model for items with imperfect quality"[Int. J. Production Economics 64 (2000) 59-64]. International Journal of Production Economics, 67(2), 201-201.
Chung, K.-J. (1998). A theorem on the determination of economic order quantity under conditions of permissible delay in payments. Computers & Operations Research, 25(1), 49-52.
Chung, K.-J., & Huang, Y.-F. (2006). Retailer’s optimal cycle times in the EOQ model with imperfect quality and a permissible credit period. Quality and Quantity, 40(1), 59-77.
Dye, C.-Y., & Ouyang, L.-Y. (2005). An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging. European Journal of Operational Research, 163(3), 776-783.
Eroglu, A., & Ozdemir, G. (2007). An economic order quantity model with defective items and shortages. International Journal of Production Economics, 106(2), 544-549.
Eroğlu, A., vd. (2004). Kusurlu Ürünler İçin Bir Ekonomik Üretim Miktari Modeli. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9(2).
Giri, B., vd. (2005). An economic production lot size model with increasing demand, shortages and partial backlogging. International Transactions in Operational Research, 12(2), 235-245.
Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 36(4), 335-338.
Goyal, S. K., & Cárdenas-Barrón, L. E. (2002). Note on: economic production quantity model for items with imperfect quality–a practical approach. International Journal of Production Economics, 77(1), 85-87.
Hadley, G., & Whitin, T. M. (1963). Analysis of inventory systems. Prentice-Hall, Englewood Cliffs, N.J.
Hwang, H., & Shinn, S. W. (1997). Retailer's pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Computers & Operations Research, 24(6), 539-547.
Jaber, M. Y., vd. (2014). Economic order quantity models for imperfect items with buy and repair options. International Journal of Production Economics, 155, 126-131.
Jamal, A., vd. (1997). An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. Journal of the Operational Research Society, 48(8), 826-833.
Jamal, A., vd. (2000). Optimal payment time for a retailer under permitted delay of payment by the wholesaler. International Journal of Production Economics, 66(1), 59-66.
Khalilpourazari, S., vd. (2016). Optimization of multi-product economic production quantity model with partial backordering and physical constraints: SQP, SFS, SA, and WCA. Applied Soft Computing, 49, 770-791.
Maddah, B., & Jaber, M. Y. (2008). Economic order quantity for items with imperfect quality: revisited. International Journal of Production Economics, 112(2), 808-815.
Montgomery, D. C., vd. (1973). Inventory models with a mixture of backorders and lost sales. Naval Research Logistics Quarterly, 20(2), 255-263.
Omar, M., vd. (2010). An alternative approach to analyze economic ordering quantity and economic production quantity inventory problems using the completing the square method. Computers & Industrial Engineering, 59(2), 362-364.
Padmanabhan, G., & Vrat, P. (1995). Theory and Methodology: EOQ models for perishable items under stock dependent selling rate. European Journal of Operational Research, 86, 281-292.
Papachristos, S., & Konstantaras, I. (2006). Economic ordering quantity models for items with imperfect quality. International Journal of Production Economics, 100(1), 148-154.
Papachristos, S., & Skouri, K. (2000). An optimal replenishment policy for deteriorating items with time-varying demand and partial–exponential type–backlogging. Operations Research Letters, 27(4), 175-184.
Papachristos, S., & Skouri, K. (2003). An inventory model with deteriorating items, quantity discount, pricing and time-dependent partial backlogging. International Journal of Production Economics, 83(3), 247-256.
Park, K. S. (1982). Inventory model with partial backorders. International journal of systems Science, 13(12), 1313-1317.
Pentico, D. W., & Drake, M. J. (2009). The deterministic EOQ with partial backordering: a new approach. European Journal of Operational Research, 194(1), 102-113.
Pentico, D. W., vd. (2009). The deterministic EPQ with partial backordering: a new approach. Omega, 37(3), 624-636.
Rosenberg, D. (1979). A new analysis of a lot‐size model with partial backlogging. Naval Research Logistics Quarterly, 26(2), 349-353.
Rosenblatt, M. J., & Lee, H. L. (1986). Economic production cycles with imperfect production processes. IIE transactions, 18(1), 48-55.
Roy, M. D., vd. (2011). An economic order quantity model of imperfect quality items with partial backlogging. International journal of systems Science, 42(8), 1409-1419.
Salameh, M., & Jaber, M. (2000). Economic production quantity model for items with imperfect quality. International Journal of Production Economics, 64(1-3), 59-64.
San-José, L.-A., vd. (2008). A backorders-lost sales EOQ inventory model with quadratic shortage cost. Paper presented at the Proceedings of the Pyrenees international workshop on statistics, probability and operations research, Jaca, Spain.
San-José, L., vd. (2007). An economic lot-size model with partial backlogging hinging on waiting time and shortage period. Applied Mathematical Modelling, 31(10), 2149-2159.
San-José, L. A., vd. (2009). A general model for EOQ inventory systems with partial backlogging and linear shortage costs. International journal of systems Science, 40(1), 59-71.
Sana, S. S. (2010). Optimal selling price and lotsize with time varying deterioration and partial backlogging. Applied Mathematics and Computation, 217(1), 185-194.
Sarkar, B., & Saren, S. (2016). Product inspection policy for an imperfect production system with inspection errors and warranty cost. European Journal of Operational Research, 248(1), 263-271.
Sarkar, B., & Sarkar, S. (2013). An improved inventory model with partial backlogging, time varying deterioration and stock-dependent demand. Economic Modelling, 30, 924-932.
Sharifi, E., vd. (2015). An EOQ model for imperfect quality items with partial backordering under screening errors. Cogent Engineering, 2(1), 994258.
Sphicas, G. P. (2006). EOQ and EPQ with linear and fixed backorder costs: Two cases identified and models analyzed without calculus. International Journal of Production Economics, 100(1), 59-64.
Sulak, H. (2008). Stok kontrolü ve ekonomik sipariş miktarı modellerinde yeni açılımlar: ödemelerde gecikmeye izin verilmesi durumu ve bir model önerisi. Sosyal Bilimler.
Sulak, H., & Eroğlu, A. (2009). Ödemelerde Gecikmeye İzin Verilmesi Durumu Altında Ekonomik Sipariş ve Üretim Miktarı Modelleri Literatür Taraması. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(1).
Taleizadeh, A. A., vd. (2016). An EOQ inventory model with partial backordering and reparation of imperfect products. International Journal of Production Economics, 182, 418-434.
Taleizadeh, A. A., vd. (2012). An economic order quantity model with partial backordering and a special sale price. European Journal of Operational Research, 221(3), 571-583.
Taleizadeh, A. A., vd. (2013). An EOQ model with partial delayed payment and partial backordering. Omega, 41(2), 354-368.
Wee, H.-M. (1993). Economic production lot size model for deteriorating items with partial back-ordering. Computers & Industrial Engineering, 24(3), 449-458.
Wee, H.-M. (1999). Deteriorating inventory model with quantity discount, pricing and partial backordering. International Journal of Production Economics, 59(1-3), 511-518.
Wee, H.-M., vd. (2014). An EPQ model with partial backorders considering two backordering costs. Applied Mathematics and Computation, 232, 898-907.
Wee, H. M. (1989). Optimal inventory policy with partial backordering. Optimal Control Applications and Methods, 10(2), 181-187.
Wee, H. M., vd. (2007). Optimal inventory model for items with imperfect quality and shortage backordering. Omega, 35(1), 7-11.
Yang, H.-L., vd. (2010). An inventory model under inflation for deteriorating items with stock-dependent consumption rate and partial backlogging shortages. International Journal of Production Economics, 123(1), 8-19.
Zeng, A. Z. (2001). A partial backordering approach to inventory control. Production Planning & Control, 12(7), 660-668.
Year 2019,
Volume: 26 Issue: 1, 11 - 32, 19.03.2019
Abad, P. L. (2001). Optimal price and order size for a reseller under partial backordering. Computers & Operations Research, 28(1), 53-65. doi: Doi 10.1016/S0305-0548(99)00086-6
Abad, P. L. (2003). Optimal price and lot size when the supplier offers a temporary price reduction over an interval. Computers & Operations Research, 30(1), 63-74.
Abad, P. L. (2008). Optimal price and order size under partial backordering incorporating shortage, backorder and lost sale costs. International Journal of Production Economics, 114(1), 179-186. doi: 10.1016/j.ijpe.2008.01.004
Aggarwal, S., & Jaggi, C. (1995). Ordering policies of deteriorating items under permissible delay in payments. Journal of the Operational Research Society, 46(5), 658-662.
Cárdenas-Barrón, L. E. (2000). Observation on:" Economic production quantity model for items with imperfect quality"[Int. J. Production Economics 64 (2000) 59-64]. International Journal of Production Economics, 67(2), 201-201.
Chung, K.-J. (1998). A theorem on the determination of economic order quantity under conditions of permissible delay in payments. Computers & Operations Research, 25(1), 49-52.
Chung, K.-J., & Huang, Y.-F. (2006). Retailer’s optimal cycle times in the EOQ model with imperfect quality and a permissible credit period. Quality and Quantity, 40(1), 59-77.
Dye, C.-Y., & Ouyang, L.-Y. (2005). An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging. European Journal of Operational Research, 163(3), 776-783.
Eroglu, A., & Ozdemir, G. (2007). An economic order quantity model with defective items and shortages. International Journal of Production Economics, 106(2), 544-549.
Eroğlu, A., vd. (2004). Kusurlu Ürünler İçin Bir Ekonomik Üretim Miktari Modeli. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9(2).
Giri, B., vd. (2005). An economic production lot size model with increasing demand, shortages and partial backlogging. International Transactions in Operational Research, 12(2), 235-245.
Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 36(4), 335-338.
Goyal, S. K., & Cárdenas-Barrón, L. E. (2002). Note on: economic production quantity model for items with imperfect quality–a practical approach. International Journal of Production Economics, 77(1), 85-87.
Hadley, G., & Whitin, T. M. (1963). Analysis of inventory systems. Prentice-Hall, Englewood Cliffs, N.J.
Hwang, H., & Shinn, S. W. (1997). Retailer's pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Computers & Operations Research, 24(6), 539-547.
Jaber, M. Y., vd. (2014). Economic order quantity models for imperfect items with buy and repair options. International Journal of Production Economics, 155, 126-131.
Jamal, A., vd. (1997). An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. Journal of the Operational Research Society, 48(8), 826-833.
Jamal, A., vd. (2000). Optimal payment time for a retailer under permitted delay of payment by the wholesaler. International Journal of Production Economics, 66(1), 59-66.
Khalilpourazari, S., vd. (2016). Optimization of multi-product economic production quantity model with partial backordering and physical constraints: SQP, SFS, SA, and WCA. Applied Soft Computing, 49, 770-791.
Maddah, B., & Jaber, M. Y. (2008). Economic order quantity for items with imperfect quality: revisited. International Journal of Production Economics, 112(2), 808-815.
Montgomery, D. C., vd. (1973). Inventory models with a mixture of backorders and lost sales. Naval Research Logistics Quarterly, 20(2), 255-263.
Omar, M., vd. (2010). An alternative approach to analyze economic ordering quantity and economic production quantity inventory problems using the completing the square method. Computers & Industrial Engineering, 59(2), 362-364.
Padmanabhan, G., & Vrat, P. (1995). Theory and Methodology: EOQ models for perishable items under stock dependent selling rate. European Journal of Operational Research, 86, 281-292.
Papachristos, S., & Konstantaras, I. (2006). Economic ordering quantity models for items with imperfect quality. International Journal of Production Economics, 100(1), 148-154.
Papachristos, S., & Skouri, K. (2000). An optimal replenishment policy for deteriorating items with time-varying demand and partial–exponential type–backlogging. Operations Research Letters, 27(4), 175-184.
Papachristos, S., & Skouri, K. (2003). An inventory model with deteriorating items, quantity discount, pricing and time-dependent partial backlogging. International Journal of Production Economics, 83(3), 247-256.
Park, K. S. (1982). Inventory model with partial backorders. International journal of systems Science, 13(12), 1313-1317.
Pentico, D. W., & Drake, M. J. (2009). The deterministic EOQ with partial backordering: a new approach. European Journal of Operational Research, 194(1), 102-113.
Pentico, D. W., vd. (2009). The deterministic EPQ with partial backordering: a new approach. Omega, 37(3), 624-636.
Rosenberg, D. (1979). A new analysis of a lot‐size model with partial backlogging. Naval Research Logistics Quarterly, 26(2), 349-353.
Rosenblatt, M. J., & Lee, H. L. (1986). Economic production cycles with imperfect production processes. IIE transactions, 18(1), 48-55.
Roy, M. D., vd. (2011). An economic order quantity model of imperfect quality items with partial backlogging. International journal of systems Science, 42(8), 1409-1419.
Salameh, M., & Jaber, M. (2000). Economic production quantity model for items with imperfect quality. International Journal of Production Economics, 64(1-3), 59-64.
San-José, L.-A., vd. (2008). A backorders-lost sales EOQ inventory model with quadratic shortage cost. Paper presented at the Proceedings of the Pyrenees international workshop on statistics, probability and operations research, Jaca, Spain.
San-José, L., vd. (2007). An economic lot-size model with partial backlogging hinging on waiting time and shortage period. Applied Mathematical Modelling, 31(10), 2149-2159.
San-José, L. A., vd. (2009). A general model for EOQ inventory systems with partial backlogging and linear shortage costs. International journal of systems Science, 40(1), 59-71.
Sana, S. S. (2010). Optimal selling price and lotsize with time varying deterioration and partial backlogging. Applied Mathematics and Computation, 217(1), 185-194.
Sarkar, B., & Saren, S. (2016). Product inspection policy for an imperfect production system with inspection errors and warranty cost. European Journal of Operational Research, 248(1), 263-271.
Sarkar, B., & Sarkar, S. (2013). An improved inventory model with partial backlogging, time varying deterioration and stock-dependent demand. Economic Modelling, 30, 924-932.
Sharifi, E., vd. (2015). An EOQ model for imperfect quality items with partial backordering under screening errors. Cogent Engineering, 2(1), 994258.
Sphicas, G. P. (2006). EOQ and EPQ with linear and fixed backorder costs: Two cases identified and models analyzed without calculus. International Journal of Production Economics, 100(1), 59-64.
Sulak, H. (2008). Stok kontrolü ve ekonomik sipariş miktarı modellerinde yeni açılımlar: ödemelerde gecikmeye izin verilmesi durumu ve bir model önerisi. Sosyal Bilimler.
Sulak, H., & Eroğlu, A. (2009). Ödemelerde Gecikmeye İzin Verilmesi Durumu Altında Ekonomik Sipariş ve Üretim Miktarı Modelleri Literatür Taraması. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(1).
Taleizadeh, A. A., vd. (2016). An EOQ inventory model with partial backordering and reparation of imperfect products. International Journal of Production Economics, 182, 418-434.
Taleizadeh, A. A., vd. (2012). An economic order quantity model with partial backordering and a special sale price. European Journal of Operational Research, 221(3), 571-583.
Taleizadeh, A. A., vd. (2013). An EOQ model with partial delayed payment and partial backordering. Omega, 41(2), 354-368.
Wee, H.-M. (1993). Economic production lot size model for deteriorating items with partial back-ordering. Computers & Industrial Engineering, 24(3), 449-458.
Wee, H.-M. (1999). Deteriorating inventory model with quantity discount, pricing and partial backordering. International Journal of Production Economics, 59(1-3), 511-518.
Wee, H.-M., vd. (2014). An EPQ model with partial backorders considering two backordering costs. Applied Mathematics and Computation, 232, 898-907.
Wee, H. M. (1989). Optimal inventory policy with partial backordering. Optimal Control Applications and Methods, 10(2), 181-187.
Wee, H. M., vd. (2007). Optimal inventory model for items with imperfect quality and shortage backordering. Omega, 35(1), 7-11.
Yang, H.-L., vd. (2010). An inventory model under inflation for deteriorating items with stock-dependent consumption rate and partial backlogging shortages. International Journal of Production Economics, 123(1), 8-19.
Zeng, A. Z. (2001). A partial backordering approach to inventory control. Production Planning & Control, 12(7), 660-668.
Sulak, H., Eroğlu, A., & Algburi, A. A. H. (2019). Ekonomik Sipariş Miktarı Modellerinde Talebin Kısmen Ertelenmesi ve Bir Uygulama. Journal of Management and Economics, 26(1), 11-32. https://doi.org/10.18657/yonveek.508931