Year 2018, Volume 4 , Issue 1, Pages 15 - 38 2018-05-31

Energy Storage and Renewable Energy: An Economic Approach
Energy Storage and Renewable Energy: An Economic Approach

Tunç Durmaz [1]


I consider an economy with fossil fuels, intermittent renewable energy, and energy storage, identify the conditions under which energy storage is optimal, and analyze the long-run tendencies of the economy energy variables. The findings are twofold. First, the amount of energy stored in the economy is highly dependent on the shape of the demand and supply schedules. In particular, energy storage is fostered by the convexity of the marginal utility, the marginal cost function for fossil fuel energy, and the degree of volatility in renewable energy. Second, considering a low level of renewable energy capacity, storing energy is not welfare improving when the unit cost of providing fossil fuel energy is constant. By showing the influence that energy storage can have on energy generation decisions, I believe that the current work can be influential in a more generous treatment of energy supply in future energy-economy models.

Bu makalede, fosil yakıtlar ve değişken yenilenebilir enerji kaynaklarıyla enerji üretiminin yapıldığı, ve üretilen enerjinin enerji depolama sistemleri aracılığıyla depolanabildiği bir ekonomi göz önünde bulundurulmaktadır. Bu kurgu dahilinde, enerji depolamanın optimal olduğu durumlar belirlenmekte, ve ekonomi-enerji değişkenlerinin uzun dönemdeki eğilimleri analiz edilmektedir. Ulaşılan sonuçlar iki yönlüdür. İlk olarak, ekonomide depolanan enerji miktarı talep ve arz eğrilerinin biçimleriyle büyük oranda ilişkilidir. Özellikle, marjinal fayda eğrisindeki konveksite, fosil enerji marjinal maliyet eğrisindeki konveksite, ve yenilenebilir enerji üretimindeki değişkenliğin büyüklüğü enerjinin depolanmasını teşvik etmektedirler. İkinci olarak, yenilenebilir enerji kapasitesinin düşük ve fosil yakıtlar kullanılarak üretilen enerjinin birimi maliyetinin sabit olduğu durumlarda, enerjinin depolanması refah artışı sağlamamaktadır. Enerji depolamanın enerji üretim kararlarına olan etkisini gösteren bu çalışmanın, enerji-ekonomi modellerini kullanarak yapılacak yeni çalışmalarda enerji arzının daha genel bir biçimde ele alınabilmesine olanak sağlayabileceği düşünülmektedir.

  • Ambec, S. and C. Crampes (2012). Electricity provision with intermittent sources of energy. Resource and Energy Economics 34 (3), 319–336.
  • Bobtcheff, C. (2011). Optimal dynamic management of a renewable energy source under uncertainty. Annals of Economics and Statistics/Annales d’Économie et de Statistique (103- 104), 143–172.
  • Bunn, D. W., C. Day, and K. Vlahos (2000). Understanding latent market power in the electricity pool of england and wales. In Pricing in Competitive Electricity Markets, pp. 103–125. Springer.
  • Crampes, C. and M. Moreaux (2001). Water resource and power generation. International Journal of Industrial Organization 19 (6), 975–997.
  • Crampes, C. and M. Moreaux (2010). Pumped storage and cost saving. Energy Economics 32 (2), 325–333.
  • EIA (2011). International Energy Outlook 2011. Technical report, U.S. Energy Information Administration.
  • Evans, L., G. Guthrie, and A. Lu (2013). The role of storage in a competitive electricity market and the effects of climate change. Energy Economics 36, 405–418.
  • Førsund, F. R. (2007). Hydropower Economics. Springer, New York, USA.
  • Førsund, F. R. (2012). Pumped-storage hydroelectricty. CREE Working paper (14).
  • Førsund, F. R. and L. Hjalmarsson (2011). Renewable energy expansion and the value of balance regulation power. Modern Cost-benefit Analysis of Hydropower Conflicts. Edward Elgar Publishing , 97–126.
  • Heal, G. (2009). Climate economics: a meta-review and some suggestions for future research. Review of Environmental Economics and Policy 3 (1), 4–21.
  • Helm, C. and M. Mier (2016). Efficient diffusion of renewable energies: A roller-coaster ride. Oldenburg Discussion Papers in Economics 289 (16), 4–21.
  • IEA (2014). Technology Roadmap: Energy Storage. Technical report, International Energy Agency.
  • IPCC (2013). Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Technical report, IPCC, Cambridge, United Kingdom and New York, NY, USA.
  • Joskow, P. L. (2011). Comparing the costs of intermittent and dispatchable electricity generating technologies. American Economic Review 101 (3), 238–241.
  • Judd, K. L. (1992). Projection methods for solving aggregate growth models. Journal of Economic Theory, 58, 410–452.
  • Judd, K. L. (1998). Numerical Methods in Economics. Yhe MIT Press, Massachusetts, London, England.
  • Kaldellis, J., A. Gkikaki, E. Kaldelli, and M. Kapsali (2012). Investigating the energy autonomy of very small non-interconnected islands: A case study: Agathonisi, Greece. Energy for Sustainable Development 16 (4), 476–485.
  • Kanakasabapathy, P. (2013). Economic impact of pumped storage power plant on social welfare of electricity market. Electrical Power and Energy Systems 45, 187–193.
  • Kimball, M. S. (1990). Precautionary saving in the small and in the large. Econometrica, 53–73.
  • Koopmans, T. C. (1958). Water storage policy in a simplified hydroelectric system. Cowles Foundation for Research in Economics at Yale University.
  • Korpaas, M., A. T. Holena, and R. Hildrumb (2003). Operation and sizing of energy storage for wind power plants in a market system. Electrical Power and Energy Systems 25, 559–606.
  • Leland, H. E. (1968). Saving and uncertainty: The precautionary demand for saving. The Quarterly Journal of Economics 82 (3), 465–473.
  • Miranda, M. J. and P. L. Fackler (2002). Applied Computational Economics and Finance. MIT Press.
  • Mueller, S., P. Frankl, and K. Sadamori (2016). Next generation wind and solar power from cost to value. International Energy Agency: Paris, France.
  • Sandmo, A. (1970). The effect of uncertainty on saving decisions. The Review of Economic Studies , 353–360.
  • Stokey, N. L. (1989). Recursive Methods in Economic Dynamics. Harvard University Press.
  • Tsitsiklis, J. N. and Y. Xu (2015). Pricing of fluctuations in electricity markets. European Journal of Operational Research 246 (1), 199–208.
  • Tuohy, A. and M. O’Malley (2011). Pumped storage in systems with very high wind penetration. Energy Policy 39 (4), 1965–1974.
  • Van de Ven, P., N. Hegde, L. Massoulie, and T. Salonidis (2011). Optimal control of residential energy storage under price fluctuations. In ENERGY 2011, The First International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies, pp. 159–162.
  • Wolak, F. A. (2003). Identification and estimation of cost functions using observed bid data. In Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress, Volume 2, pp. 133. Cambridge University Press.
Primary Language en
Subjects Social
Journal Section Makaleler
Authors

Orcid: 0000-0001-5693-3350
Author: Tunç Durmaz (Primary Author)
Institution: Yildiz Technical University
Country: Turkey


Dates

Publication Date : May 31, 2018

APA Durmaz, T . (2018). Energy Storage and Renewable Energy: An Economic Approach . Yildiz Social Science Review , 4 (1) , 15-38 . Retrieved from https://dergipark.org.tr/en/pub/yssr/issue/33731/379500