Derleme
BibTex RIS Kaynak Göster

Relationship of Autism Spectrum Disorder with Enteric Nervous System

Yıl 2024, Cilt: 5 Sayı: 1, 31 - 41, 31.05.2024

Öz

The aim of this review is to evaluate the studies on changes in the enteric nervous system in autism spectrum disorder and to present current developments.
Autism spectrum disorder is a combination of neurodegenerative disorders characterised by genetically and environmentally variable restricted social communication with impaired repetitive behaviours that negatively affect social communication. According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V), autism spectrum disorder is subdivided into autistic disorder, Asperger's disorder, childhood disintegrative disorder and pervasive developmental disorder not otherwise specified. It has been reported that certain brain areas in the cerebellum, limbic system and cortex are affected in neuropathology of autism spectrum disorder. The enteric nervous system is a major component of the gut-brain axis. The enteric nervous system is composed of a network of neurons and glial cells responsible for coordinating many aspects of gastrointestinal function. The enteric nervous system is responsible for the control and coordination of local motility in the gastrointestinal tract, the movement of fluids through the mucosal epithelium, changes in blood flow and immune system interactions. Impaired communication between the gut and brain resulting in incompatibility of the gut-brain axis in people with autism spectrum disorder. Digestive problems and gastrointestinal dysfunction occur depending on these.
By means of bidirectional communication on the intestine-brain axis, problems occurred in both systems may have negative effects on the systems in mutual way. People with autism spectrum disorder also have gastrointestinal problems because of changes in the enteric nervous system. More studies on the relationship between autism spectrum disorder and enteric nervous system are needed to solve these problems. As a result of these studies, improvement of gastrointestinal problems in autism spectrum disorder will improve the overall quality of life in people with autism spectrum disorder.

Kaynakça

  • 1. Wang X, Tang R, Wei Z, Zhan Y, Lu J, Li Z. The enteric nervous system deficits in autism spectrum disorder. Front Neurosci. 2023;17:1101071. https://doi.org/10.3389/fnins.2023.1101071
  • 2. Doenyas C, Ekici B, Unay Ö S, Gönen İ, Tatlı B. Autism in Turkey: demographics, behavior problems, and accompanying medical conditions in a sample of Turkish youth with autism spectrum disorder. Int J Dev Disabil. 2023;69(2):179–189. https://doi.org/10.1080/20473869.2021.1937001
  • 3. American Psychiatric Association D, Association AP. Diagnostic and statistical manual of mental disorders: DSM-5. Washington, DC: American Psychiatric Association. 2013. https://doi.org/10.1176/appi.books.9780890425596
  • 4. Carbone A, Dell’Aquila A. The Diagnosis of “pervasive developmental disorder not otherwise specified”: a systematic literature review. Children (Basel). 2023;10(5). https://doi.org/10.3390/children10050844
  • 5. Dovgan K, Gynegrowski K, Ferguson BJ. Bidirectional relationship between internalizing symptoms and gastrointestinal problems in youth with Autism Spectrum Disorder. J Autism Dev Disord. 2023;53(11):4488–4494. https://doi.org/10.1007/s10803-022-05539-6
  • 6. Chernikova MA, Flores GD, Kilroy E, Labus JS, Mayer EA, Aziz-Zadeh L. The brain-gut-microbiome system: pathways and implications for autism spectrum disorder. Nutrients. 2021;13(12). https://doi.org/10.3390/nu13124497
  • 7. Madra M, Ringel R, Margolis KG. Gastrointestinal issues and autism spectrum disorder. Child Adolesc Psychiatr Clin N Am. 2020;29(3):501–513. https://doi.org/10.1016/j.chc.2020.02.005
  • 8. Chaidez V, Hansen RL, Hertz-Picciotto I. Gastrointestinal problems in children with autism, developmental delays or typical development. J Autism Dev Disord. 2014;44(5):1117–1127. https://doi.org/10.1007/s10803-013-1973-x
  • 9. Wasilewska J, Klukowski M. Gastrointestinal symptoms and autism spectrum disorder: links and risks –a possible new overlap syndrome. Pediatric Health Med Ther. 2015;6:153–166. https://doi.org/10.2147/PHMT.S85717
  • 10. Leader G, Abberton C, Cunningham S, Gilmartin K, Grudzien M, Higgins E, et al. Gastrointestinal symptoms in autism spectrum disorder: a systematic review. Nutrients. 2022;14(7):1471. https://doi.org/10.3390/nu14071471
  • 11. Mehra A, Arora G, Sahni G, Kaur M, Singh H, Singh B, et al. Gut microbiota and autism spectrum disorder: from pathogenesis to potential therapeutic perspectives. J Tradit Complement Med. 2023;13(2):135–149. https://doi.org/10.1016/j.jtcme.2022.03.001
  • 12. Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R, Alhawamdeh R. Role of gastrointestinal health in managing children with autism spectrum disorder. World J Clin Pediatr. 2023;12(4):171–196. https://doi.org/10.5409/wjcp.v12.i4.171
  • 13. Ferguson BJ, Marler S, Altstein LL, Lee EB, Akers J, Sohl K, et al. Psychophysiological associations with gastrointestinal symptomatology in autism spectrum disorder. Autism Res. 2017;10(2):276–288. https://doi. org/10.1002/aur.1646
  • 14. Prosperi M, Santocchi E, Muratori F, Narducci C, Calderoni S, Tancredi R, et al. Vocal and motor behaviors as a possible expression of gastrointestinal problems in preschoolers with autism spectrum disorder. BMC Pediatr. 2019;19(1):1–10. https://doi.org/10.1186/s12887-019-1841-8
  • 15. Beopoulos A, Gea M, Fasano A, Iris F. Autonomic nervous system neuroanatomical alterations could provoke and maintain gastrointestinal dysbiosis in autism spectrum disorder (ASD): a novel microbiome-host interaction mechanistic hypothesis. Nutrients. 2021;14(1). https://doi.org/10.3390/nu14010065
  • 16. Dargenio VN, Dargenio C, Castellaneta S, De Giacomo A, Laguardia M, Schettini F, et al. Intestinal barrier dysfunction and Microbiota–Gut–Brain axis: possible implications in the pathogenesis and treatment of autism spectrum disorder. Nutrients. 2023;15(7):1620. https://doi.org/10.3390/nu15071620
  • 17. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism –comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11(1):22. https://doi.org/10.1186/1471-230X-11-22
  • 18. Peeters B, Noens I, Philips EM, Kuppens S, Benninga MA. Autism spectrum disorders in children with functional defecation disorders. J Pediatr. 2013;163(3):873–8. https://doi.org/10.1016/j.jpeds.2013.02.028
  • 19. Rao M, Gershon MD. The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol. 2016;13(9):517–528. https://doi.org/10.1038/nrgastro.2016.107
  • 20. Blatt GJ. The neuropathology of autism. Scientifica (Cairo). 2012;2012:703675. https://doi.org/10.6064/2012/703675
  • 21. Donovan AP, Basson MA. The neuroanatomy of autism –a developmental perspective. J Anat. 2017;230(1):4–15. https://doi.org/10.1111/joa.12542
  • 22. Hashem S, Nisar S, Bhat AA, Yadav SK, Azeem MW, Bagga P, et al. Genetics of structural and functional brain changes in autism spectrum disorder. Transl Psychiatry. 2020;10(1):229. https://doi.org/10.1038/s41398-020-00921-3
  • 23. Becker EB, Stoodley CJ. Autism spectrum disorder and the cerebellum. Int Rev Neurobiol. 2013;113:1–34. https://doi.org/10.1016/B978-0-12-418700-9.00001-0
  • 24. Gadad BS, Hewitson L, Young KA, German DC. Neuropathology and animal models of autism: genetic and environmental factors. Autism Res Treat. 2013;2013:731935. https://doi.org/10.1155/2013/731935
  • 25. Wang SS, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83(3):518–32. https://doi.org/10.1016/j.neuron.2014.07.016
  • 26. Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, et al. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther. 2022;7(1):229. https://doi. org/10.1038/s41392-022-01081-0
  • 27. Kaminski VL, Michita RT, Ellwanger JH, Veit TD, Schuch JB, Riesgo RDS, et al. Exploring potential impacts of pregnancy-related maternal immune activation and extracellular vesicles on immune alterations observed in autism spectrum disorder. Heliyon. 2023;9(5):e15593. https://doi.org/10.1016/j. heliyon.2023.e15593
  • 28. Onore C, Careaga M, Ashwood P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun. 2012;26(3):383–392. https://doi.org/10.1016/j.bbi.2011.08.007
  • 29. Heunis T-M, Aldrich C, de Vries PJ. Recent advances in resting-state electroencephalography biomarkers for autism spectrum disorder -a review of methodological and clinical challenges. Pediatric Neurology. 2016;61:28–37. https://doi.org/10.1016/j.pediatrneurol.2016.03.010
  • 30. Magalhães HIR, Castelucci P. Enteric nervous system and inflammatory bowel diseases: Correlated impacts and therapeutic approaches through the P2X7 receptor. World J Gastroenterol. 2021;27(46):7909–7924. https://doi.org/10.3748/wjg.v27.i46.7909
  • 31. Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol. 2020;17(6):338–351. https://doi.org/10.1038/s41575-020-0271-2
  • 32. Nagy N, Goldstein AM. Enteric nervous system development: A crest cell’s journey from neural tube to colon. Semin Cell Dev Biol. 2017;66:94–106. https://doi.org/10.1016/j.semcdb.2017.01.006
  • 33. Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol. 2013;305(1):G1–24. https://doi.org/10.1152/ajpgi.00452.2012
  • 34. Hansen MB. The enteric nervous system I. Organisation and classification. Pharmacology & Toxicology. 2003;92(3):105–113. https://doi.org/10.1034/j.1600-0773.2003.t01-1-920301.x
  • 35. Alim E. Ratlarda perinatal stresin enterik sinir sistemi üzerine olan etkilerinin i̇ncelenmesi. Gazi Üniversitesi Sağlık Bilimleri Enstitüsü: Gazi Üniversitesi;2020.
  • 36. Shahrestani J MDJ. Neuroanatomy, Auerbach Plexus. Treasure Island (FL): StatPearls Publishing. 2023.
  • 37. Fatu AM, Ciubotariu D, Antohe M-E, Iordache C, Ancuta C, Vâscu MB. Neuronal and synaptic organization of enteric nervous system-the premises of the multidisciplinary therapeutic approach. Romanian J Oral Rehabil. 2023;15(4):544–558.
  • 38. Tamada H, Hashitani H. Calcium responses in subserosal interstitial cells of the guinea-pig proximal colon. Neurogastroenterol Motil. 2014;26(1):115–123. https://doi.org/10.1111/nmo.12240
  • 39. Gulbransen BD, Sharkey KA. Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2012;9(11):625–632. https://doi.org/10.1038/nrgastro.2012.138
  • 40. Fleming 2nd MA, Ehsan L, Moore SR, Levin DE. The enteric nervous system and its emerging role as a therapeutic target. Gastroenterol Res Pract. 2020;2020:8024171. https://doi.org/10.1155/2020/8024171
  • 41. Wang GD, Wang XY, Hu HZ, Fang XC, Liu S, Gao N, et al. Angiotensin receptors and actions in guinea pig enteric nervous system. Am J Physiol Gastrointest Liver Physiol. 2005;289(3):G614–26. https://doi.org/10.1152/ ajpgi.00119.2005
  • 42. Linden DR. Colitis is associated with a loss of intestinofugal neurons. Am J Physiol Gastrointest Liver Physiol. 2012;303(10):G1096–1104. https://doi.org/10.1152/ajpgi.00176.2012
  • 43. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–269, w64. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
  • 44. Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014;4(4):1339–1368. https://doi.org/10.1002/cphy.c130055
  • 45. Yu CD, Xu QJ, Chang RB. Vagal sensory neurons and gut-brain signaling. Curr Opin Neurobiol. 2020;62:133–140. https://doi.org/10.1016/j.conb.2020.03.006
  • 46. Uvnäs-Moberg K. Role of efferent and afferent vagal nerve activity during reproduction: integrating function of oxytocin on metabolism and behaviour. Psychoneuroendocrinology. 1994;19(5-7):687–695. https://doi.org/10.1016/0306-4530(94)90050-7
  • 47. Bonaz B, Sinniger V, Pellissier S. The Vagus Nerve in the Neuro-Immune Axis: Implications in the Pathology of the Gastrointestinal Tract. Front Immunol. 2017;8:1452. https://doi.org/10.3389/fimmu.2017.01452
  • 48. Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141(5):769–776. https://doi.org/10.3945/jn.110.135657
  • 49. Adams JB, Kirby J, Audhya T, Whiteley P, Bain J. Vitamin/mineral/micronutrient supplement for autism spectrum disorders: a research survey. BMC Pediatr. 2022;22(1):590. https://doi.org/10.1186/s12887-022-03628-050. Yasuda H, Tsutsui T. Assessment of infantile mineral imbalances in autism spectrum disorders (ASDs). Int J Environ Res Public Health. 2013;10(11):6027–6043. https://doi.org/10.3390/ijerph10116027
  • 50. Yasuda H, Tsutsui T. Assessment of infantile mineral imbalances in autism spectrum disorders (ASDs). Int J Environ Res Public Health. 2013;10(11):6027–6043. https://doi.org/10.3390/ijerph10116027

Otizm Spektrum Bozukluğunun Enterik Sinir Sistemi ile İlişkisi

Yıl 2024, Cilt: 5 Sayı: 1, 31 - 41, 31.05.2024

Öz

Bu derlemenin amacı, otizm spektrum bozukluğunda enterik sinir sisteminde olan değişikliklerle ilgili çalışmaları değerlendirerek günümüz gelişmelerini ortaya koymaktır. Otizm spektrum bozukluğu, sosyal iletişimi negatif etkileyen, bozulmuş tekrarlayan davranışlar sergileyen genetik ve çevresel olarak değişkenlik gösteren kısıtlı sosyal iletişimle karakterize olan nörodejeneratif bozuklukların kombinasyonudur. Mental Bozuklukların Tanısal ve İstatistiksel El Kitabında (DSM-V); otizm spektrum bozukluğu, otistik bozukluk, Asperger bozukluğu, çocukluk çağı dezintegratif bozukluğu ve başka türlü tanımlanmayan yaygın gelişimsel bozukluk olarak alt gruplara ayrılarak tanımlanmıştır. Otizm spektrum bozukluğunun nöropatolojisinde beyincik, limbik sistem ve korteksteki belirli beyin alanlarının etkilendiği bildirilmiştir. Enterik sinir sistemi, bağırsak beyin eksenini oluşturan çok önemli bir yapıdır. Enterik sinir sistemi gastrointestinal fonksiyonun birçok yönünü koordine etmekten sorumlu olan nöron ve glial hücre ağından oluşmaktadır. Enterik sinir sistemi; gastrointestinal kanalda lokal hareketliliğin kontrolü ve koordinasyonundan, sıvıların mukoza epiteli boyunca hareketinden, kan akışındaki değişikliklerden ve bağışıklık sistemi ile etkileşimlerde görev almaktadır. Otizm spektrum bozukluğu olan bireylerde bağırsak beyin arasındaki iletişimin bozulması bağırsak beyin ekseninin uyumsuzluğu ile sonuçlanmaktadır. Bunlara bağlı olarak sindirim sorunları ve gastrointestinal disfonksiyon ortaya çıkmaktadır. Bağırsak- beyin ekseninde çift yönlü iletişim sayesinde her iki sistemde oluşan sorunlar karşılıklı olarak sistemler üzerinde olumsuz etkiler oluşturabilmektedir. Otizm spektrum bozukluğu olan bireylerde de enterik sinir sisteminde oluşan değişiklikler nedeniyle gastrointestinal sorunlar görülmektedir. Bu sorunların çözümü için otizm spektrum bozukluğu ve enterik sinir sistemi ilişkisi konusunda daha fazla araştırmaya gereksinim vardır. Bu araştırmalar sonucunda otizm spektrum bozukluğunda gastrointestinal sorunların iyileştirilmesi otizm spektrum bozukluğu olan bireylerde genel yaşam kalitesini artıracaktır.

Destekleyen Kurum

Yazarlar bu çalışma için finansal destek almadıklarını beyan etmişlerdir.

Kaynakça

  • 1. Wang X, Tang R, Wei Z, Zhan Y, Lu J, Li Z. The enteric nervous system deficits in autism spectrum disorder. Front Neurosci. 2023;17:1101071. https://doi.org/10.3389/fnins.2023.1101071
  • 2. Doenyas C, Ekici B, Unay Ö S, Gönen İ, Tatlı B. Autism in Turkey: demographics, behavior problems, and accompanying medical conditions in a sample of Turkish youth with autism spectrum disorder. Int J Dev Disabil. 2023;69(2):179–189. https://doi.org/10.1080/20473869.2021.1937001
  • 3. American Psychiatric Association D, Association AP. Diagnostic and statistical manual of mental disorders: DSM-5. Washington, DC: American Psychiatric Association. 2013. https://doi.org/10.1176/appi.books.9780890425596
  • 4. Carbone A, Dell’Aquila A. The Diagnosis of “pervasive developmental disorder not otherwise specified”: a systematic literature review. Children (Basel). 2023;10(5). https://doi.org/10.3390/children10050844
  • 5. Dovgan K, Gynegrowski K, Ferguson BJ. Bidirectional relationship between internalizing symptoms and gastrointestinal problems in youth with Autism Spectrum Disorder. J Autism Dev Disord. 2023;53(11):4488–4494. https://doi.org/10.1007/s10803-022-05539-6
  • 6. Chernikova MA, Flores GD, Kilroy E, Labus JS, Mayer EA, Aziz-Zadeh L. The brain-gut-microbiome system: pathways and implications for autism spectrum disorder. Nutrients. 2021;13(12). https://doi.org/10.3390/nu13124497
  • 7. Madra M, Ringel R, Margolis KG. Gastrointestinal issues and autism spectrum disorder. Child Adolesc Psychiatr Clin N Am. 2020;29(3):501–513. https://doi.org/10.1016/j.chc.2020.02.005
  • 8. Chaidez V, Hansen RL, Hertz-Picciotto I. Gastrointestinal problems in children with autism, developmental delays or typical development. J Autism Dev Disord. 2014;44(5):1117–1127. https://doi.org/10.1007/s10803-013-1973-x
  • 9. Wasilewska J, Klukowski M. Gastrointestinal symptoms and autism spectrum disorder: links and risks –a possible new overlap syndrome. Pediatric Health Med Ther. 2015;6:153–166. https://doi.org/10.2147/PHMT.S85717
  • 10. Leader G, Abberton C, Cunningham S, Gilmartin K, Grudzien M, Higgins E, et al. Gastrointestinal symptoms in autism spectrum disorder: a systematic review. Nutrients. 2022;14(7):1471. https://doi.org/10.3390/nu14071471
  • 11. Mehra A, Arora G, Sahni G, Kaur M, Singh H, Singh B, et al. Gut microbiota and autism spectrum disorder: from pathogenesis to potential therapeutic perspectives. J Tradit Complement Med. 2023;13(2):135–149. https://doi.org/10.1016/j.jtcme.2022.03.001
  • 12. Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R, Alhawamdeh R. Role of gastrointestinal health in managing children with autism spectrum disorder. World J Clin Pediatr. 2023;12(4):171–196. https://doi.org/10.5409/wjcp.v12.i4.171
  • 13. Ferguson BJ, Marler S, Altstein LL, Lee EB, Akers J, Sohl K, et al. Psychophysiological associations with gastrointestinal symptomatology in autism spectrum disorder. Autism Res. 2017;10(2):276–288. https://doi. org/10.1002/aur.1646
  • 14. Prosperi M, Santocchi E, Muratori F, Narducci C, Calderoni S, Tancredi R, et al. Vocal and motor behaviors as a possible expression of gastrointestinal problems in preschoolers with autism spectrum disorder. BMC Pediatr. 2019;19(1):1–10. https://doi.org/10.1186/s12887-019-1841-8
  • 15. Beopoulos A, Gea M, Fasano A, Iris F. Autonomic nervous system neuroanatomical alterations could provoke and maintain gastrointestinal dysbiosis in autism spectrum disorder (ASD): a novel microbiome-host interaction mechanistic hypothesis. Nutrients. 2021;14(1). https://doi.org/10.3390/nu14010065
  • 16. Dargenio VN, Dargenio C, Castellaneta S, De Giacomo A, Laguardia M, Schettini F, et al. Intestinal barrier dysfunction and Microbiota–Gut–Brain axis: possible implications in the pathogenesis and treatment of autism spectrum disorder. Nutrients. 2023;15(7):1620. https://doi.org/10.3390/nu15071620
  • 17. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism –comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11(1):22. https://doi.org/10.1186/1471-230X-11-22
  • 18. Peeters B, Noens I, Philips EM, Kuppens S, Benninga MA. Autism spectrum disorders in children with functional defecation disorders. J Pediatr. 2013;163(3):873–8. https://doi.org/10.1016/j.jpeds.2013.02.028
  • 19. Rao M, Gershon MD. The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol. 2016;13(9):517–528. https://doi.org/10.1038/nrgastro.2016.107
  • 20. Blatt GJ. The neuropathology of autism. Scientifica (Cairo). 2012;2012:703675. https://doi.org/10.6064/2012/703675
  • 21. Donovan AP, Basson MA. The neuroanatomy of autism –a developmental perspective. J Anat. 2017;230(1):4–15. https://doi.org/10.1111/joa.12542
  • 22. Hashem S, Nisar S, Bhat AA, Yadav SK, Azeem MW, Bagga P, et al. Genetics of structural and functional brain changes in autism spectrum disorder. Transl Psychiatry. 2020;10(1):229. https://doi.org/10.1038/s41398-020-00921-3
  • 23. Becker EB, Stoodley CJ. Autism spectrum disorder and the cerebellum. Int Rev Neurobiol. 2013;113:1–34. https://doi.org/10.1016/B978-0-12-418700-9.00001-0
  • 24. Gadad BS, Hewitson L, Young KA, German DC. Neuropathology and animal models of autism: genetic and environmental factors. Autism Res Treat. 2013;2013:731935. https://doi.org/10.1155/2013/731935
  • 25. Wang SS, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83(3):518–32. https://doi.org/10.1016/j.neuron.2014.07.016
  • 26. Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, et al. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther. 2022;7(1):229. https://doi. org/10.1038/s41392-022-01081-0
  • 27. Kaminski VL, Michita RT, Ellwanger JH, Veit TD, Schuch JB, Riesgo RDS, et al. Exploring potential impacts of pregnancy-related maternal immune activation and extracellular vesicles on immune alterations observed in autism spectrum disorder. Heliyon. 2023;9(5):e15593. https://doi.org/10.1016/j. heliyon.2023.e15593
  • 28. Onore C, Careaga M, Ashwood P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun. 2012;26(3):383–392. https://doi.org/10.1016/j.bbi.2011.08.007
  • 29. Heunis T-M, Aldrich C, de Vries PJ. Recent advances in resting-state electroencephalography biomarkers for autism spectrum disorder -a review of methodological and clinical challenges. Pediatric Neurology. 2016;61:28–37. https://doi.org/10.1016/j.pediatrneurol.2016.03.010
  • 30. Magalhães HIR, Castelucci P. Enteric nervous system and inflammatory bowel diseases: Correlated impacts and therapeutic approaches through the P2X7 receptor. World J Gastroenterol. 2021;27(46):7909–7924. https://doi.org/10.3748/wjg.v27.i46.7909
  • 31. Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol. 2020;17(6):338–351. https://doi.org/10.1038/s41575-020-0271-2
  • 32. Nagy N, Goldstein AM. Enteric nervous system development: A crest cell’s journey from neural tube to colon. Semin Cell Dev Biol. 2017;66:94–106. https://doi.org/10.1016/j.semcdb.2017.01.006
  • 33. Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol. 2013;305(1):G1–24. https://doi.org/10.1152/ajpgi.00452.2012
  • 34. Hansen MB. The enteric nervous system I. Organisation and classification. Pharmacology & Toxicology. 2003;92(3):105–113. https://doi.org/10.1034/j.1600-0773.2003.t01-1-920301.x
  • 35. Alim E. Ratlarda perinatal stresin enterik sinir sistemi üzerine olan etkilerinin i̇ncelenmesi. Gazi Üniversitesi Sağlık Bilimleri Enstitüsü: Gazi Üniversitesi;2020.
  • 36. Shahrestani J MDJ. Neuroanatomy, Auerbach Plexus. Treasure Island (FL): StatPearls Publishing. 2023.
  • 37. Fatu AM, Ciubotariu D, Antohe M-E, Iordache C, Ancuta C, Vâscu MB. Neuronal and synaptic organization of enteric nervous system-the premises of the multidisciplinary therapeutic approach. Romanian J Oral Rehabil. 2023;15(4):544–558.
  • 38. Tamada H, Hashitani H. Calcium responses in subserosal interstitial cells of the guinea-pig proximal colon. Neurogastroenterol Motil. 2014;26(1):115–123. https://doi.org/10.1111/nmo.12240
  • 39. Gulbransen BD, Sharkey KA. Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2012;9(11):625–632. https://doi.org/10.1038/nrgastro.2012.138
  • 40. Fleming 2nd MA, Ehsan L, Moore SR, Levin DE. The enteric nervous system and its emerging role as a therapeutic target. Gastroenterol Res Pract. 2020;2020:8024171. https://doi.org/10.1155/2020/8024171
  • 41. Wang GD, Wang XY, Hu HZ, Fang XC, Liu S, Gao N, et al. Angiotensin receptors and actions in guinea pig enteric nervous system. Am J Physiol Gastrointest Liver Physiol. 2005;289(3):G614–26. https://doi.org/10.1152/ ajpgi.00119.2005
  • 42. Linden DR. Colitis is associated with a loss of intestinofugal neurons. Am J Physiol Gastrointest Liver Physiol. 2012;303(10):G1096–1104. https://doi.org/10.1152/ajpgi.00176.2012
  • 43. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–269, w64. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
  • 44. Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014;4(4):1339–1368. https://doi.org/10.1002/cphy.c130055
  • 45. Yu CD, Xu QJ, Chang RB. Vagal sensory neurons and gut-brain signaling. Curr Opin Neurobiol. 2020;62:133–140. https://doi.org/10.1016/j.conb.2020.03.006
  • 46. Uvnäs-Moberg K. Role of efferent and afferent vagal nerve activity during reproduction: integrating function of oxytocin on metabolism and behaviour. Psychoneuroendocrinology. 1994;19(5-7):687–695. https://doi.org/10.1016/0306-4530(94)90050-7
  • 47. Bonaz B, Sinniger V, Pellissier S. The Vagus Nerve in the Neuro-Immune Axis: Implications in the Pathology of the Gastrointestinal Tract. Front Immunol. 2017;8:1452. https://doi.org/10.3389/fimmu.2017.01452
  • 48. Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141(5):769–776. https://doi.org/10.3945/jn.110.135657
  • 49. Adams JB, Kirby J, Audhya T, Whiteley P, Bain J. Vitamin/mineral/micronutrient supplement for autism spectrum disorders: a research survey. BMC Pediatr. 2022;22(1):590. https://doi.org/10.1186/s12887-022-03628-050. Yasuda H, Tsutsui T. Assessment of infantile mineral imbalances in autism spectrum disorders (ASDs). Int J Environ Res Public Health. 2013;10(11):6027–6043. https://doi.org/10.3390/ijerph10116027
  • 50. Yasuda H, Tsutsui T. Assessment of infantile mineral imbalances in autism spectrum disorders (ASDs). Int J Environ Res Public Health. 2013;10(11):6027–6043. https://doi.org/10.3390/ijerph10116027
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Merkezi Sinir Sistemi, Otonom Sinir Sistemi, Periferik Sinir Sistemi
Bölüm Derleme
Yazarlar

Rabet Gozil 0000-0002-5493-7734

Esma Deniz Barç 0000-0003-4636-4312

Meltem Bahcelıoglu 0000-0001-5279-3450

Yayımlanma Tarihi 31 Mayıs 2024
Gönderilme Tarihi 15 Mart 2024
Kabul Tarihi 8 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 1

Kaynak Göster

AMA Gozil R, Barç ED, Bahcelıoglu M. Otizm Spektrum Bozukluğunun Enterik Sinir Sistemi ile İlişkisi. YIU Saglik Bil Derg. Mayıs 2024;5(1):31-41.