Research Article
BibTex RIS Cite

Fen Bilimleri Öğretmen Adaylarının Kavramsal Değişimlerine Zenginleştirilmiş Laboratuvar Rehber Materyalinin Etkisi: Buharlaşma ve Kaynama*

Year 2017, Volume: 14 Issue: 1, 529 - 561, 03.04.2017

Abstract

Bu çalışmanın amacı, ‘Buharlaşma ve Kaynama’
kavramlarının öğretiminde farklı kavramsal değişim yöntem/tekniklerin 5E
öğretim modelinin aşamalarında kullanılması sonucu oluşturulan
zenginleştirilmiş laboratuvar rehber materyalinin fen bilimleri öğretmen
adaylarının kavramsal değişimine etkisini araştırmaktır. Yarı deneysel
yönteme göre tasarlanan araştırmanın örneklemi, Giresun Üniversitesi’nin Fen
Bilimleri Öğretmenliği Anabilim Dalı’nda öğrenim gören toplam 97 3. sınıf
öğretmen adayından oluşmaktadır. Deney gruplarında bilgisayar animasyonları,
kavram haritası, kavramsal değişim metni ve bilimsel süreç becerilerine dayalı deney
etkinliklerinin çalışma yaprağı (ÇY) eşliğinde 5E öğretim modelinin aşamalarına
entegrasyonu sonucu oluşturulan zenginleştirilmiş laboratuvar rehber materyali
kullanılırken; kontrol gruplarında anlatım, soru-cevap ve kapalı uçlu deney
yöntemleri kullanılmıştır. Araştırmada veri toplamak için iki aşamalı ‘Buharlaşma
ve Kaynama Kavram Testi (BKKT)’ kullanılmıştır. BKKT’n
in analizinden, deney
ve kontrol grupları arasında kavramsal değişim yönünden deney gruplarının daha
başarılı olduğu
ortaya çıkmıştır. Yani
zenginleştirilmiş
laboratuvar rehber materyalinin
öğretmen adaylarının ‘Buharlaşma ve Kaynama’ konusunda kavramsal anlamalarını
daha fazla arttırdığı, dolayısıyla pozitif yönde bir kavramsal değişim sağlamasında
daha etkili olduğu tespit edilmiştir.

References

  • Abraham, M. R., Gryzybowski, E. B., Renner, J. W., & Marek, A., E. (1992). Understanding and misunderstanding of eighth graders of five chemistry concepts found in textbooks. Journal of Research in Science Teaching, 29(2), 105-120.
  • Aktamış, H., & Ergin, Ö. (2007). Bilimsel süreç becerileri ile bilimsel yaratıcılık arasındaki ilişkinin belirlenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 33, 11-23.
  • Anderson, C. W. (2007). Perspectives on science learning. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 3–30). Mahwah, NJ: Erlbaum.
  • Ayas, A., & Demirbaş, A. (1997). Turkish secondary students’ conception of introductory chemistry concepts. Journal of Chemical Education, 74(5), 518-521.
  • Ayas, A., Özmen, H., & Çalık, M. (2010). Students’ conceptions of the particulate nature of matter at secondary and tertiary level. International Journal of Science and Mathematics Education, 8(1), 165-184. DOI: 10.1007/s10763-009-9167-x
  • Bar, V., & Galili, I. (1994). Stages of children’s views about evaporation. International Journal of Science Education, 16(2), 157-174.
  • Bar, V., & Travis, A. S. (1991). Children’s views concerning phase changes. Journal of Research in Science Teaching, 28(4), 363-382.
  • Beveridge, M. (1985). The development of young children’s understanding of the process of evaporation. British Journal of Educational Psychology, 55(1), 84-90.
  • Bodner, G. M. (1990). Why good teaching fails and hard-working students do not always succeed. Spectrum, 28(1), 27-32.
  • Canpolat, N. Pinarbasi, T., & Sözbilir, M. (2006). Prospective teachers' misconceptions of vaporization and vapor pressure. Journal of Chemical Education, 83(8), 1237. DOİ: 10.1021/ed083p1237.
  • Canpolat, N., Pınarbaşı, T., Bayrakçeken, S., & Geban, Ö. (2004). Kimyadaki bazı yaygın yanlış kavramalar. Gazi Üniversitesi Eğitim Fakültesi Dergisi, 24(1), 135-146.
  • Carey S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). An experiment is when you try it and see if it works”: A study of grade 7 students’ understanding of the construction of scientific knowledge. International Journal of Science Education, 11(5), 514-529.
  • Chang, J. Y. (1999). Teacher college students’ conceptions about evaporation, condensation, and boiling. Science Education, 83(5), 511-526.
  • Coştu, B., & Ayas, A. (2005). Evaporation in different liquids: secondary students’ conceptions. Research in Science & Technological Education, 23(1), 75-97, DOI: 10.1080/02635140500068476.
  • Coştu, B., & Ünal, S. (2005). Le-Chatelier prensibinin çalışma yaprakları ile öğretimi. Yüzüncü Yıl Üniversitesi Elektronik Eğitim Fakültesi Dergisi, 1(1), 1-10.
  • Coştu, B., Ayas, A., Niaz, M., Ünal, S., & Çalık, M. (2007). Facilitating conceptual change in students’ understanding of boiling concept. Journal of Science Education Technology, 16(6), 524-536. DOI:10.1007/s10956-007-9079-x
  • Coştu, B., Karataş, F. Ö., & Ayas, A. (2003). Kavram öğretiminde çalışma yapraklarının kullanılması. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 14(2), 33-48.
  • Çayan, Y., & Karslı, F. (2015). 6. sınıf öğrencilerinin fiziksel ve kimyasal değişim konusundaki kavram yanılgılarının giderilmesinde probleme dayalı öğrenme yaklaşımının etkisi. Kastamonu Eğitim Dergisi, 23(4), 1433-1448.
  • Demircioğlu, G., Demircioğlu, H., & Vural, S. (2015). 5e öğretim modelinin üstün yetenekli öğrencilerin buharlaşma ve yoğuşma kavramlarını anlamaları üzerine etkisi. Kastamonu Eğitim Dergisi, 24(2), 821-838.
  • Diakidoy, I. N., Kendeou, P., & Ioannides, C. (2003). Reading about energy: The effects of text structure in science learning and conceptual change. Contemporary Educational Psychology, 28(3), 335-356.
  • Driver, R., & Easley, J. (1978). Pupils and paradigms: a review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61-84.
  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688, DOI: 10.1080/09500690305016.
  • Ebenezer, J. (2001). A hypermedia environment to explore and negotiate students’ conceptions: animation of the solution process of table salt. Journal of Science Education and Technology, 10(1), 73-91.
  • Finley, F. N., Stewart, J., & Yarroch, W. L. (1982). Teachers' perceptions of important and difficult science content. Science Education, 66(4), 531-538.
  • Garcia, S., Molina, D., Lozano, M., & Herrera, F. (2009). A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. Journal of Heuristics, 15(6), 617-644.
  • Gonzalez, F. M. (1997). Diagnosis of spanish primary school students’ common alternative science concepts. School Science and Mathematics, 97(2), 68-74.
  • Goodwin, A. (2000). The teaching of chemistry: Who is the learner? Chemistry Education Research and Practice in Europe, 1(1), 51-60.
  • Gönen, S., & Akgün, A. (2005). Bilgi eksiklikleri ve kavram yanılgılarının tespiti ve giderilmesinde, çalışma yaprakları ve sınıf içi tartışma yönteminin uygulanabilirliği üzerine bir araştırma. Elektronik Sosyal Bilimler Dergisi, 4(13), 99-111.
  • Hatzinikita V., & Koulaidis, V. (1997). Pupils’ ideas on conservation during changes in the state of water. Research in Science and Technological Education, 15(1), 53-71.
  • Hwang, B. T., & Hwang, H. W. (1990). A Study of Cognitive Development of the Concepts of Solution, Research Report, Taipei, Republic of China: National Science Council.
  • Hyslop-Margison, E. J., & Strobel, J. (2007). Constructivism and education: Misunderstandings and pedagogical implications. The Teacher Educator, 43(1), 72-86, DOI: 10.1080/08878730701728945.
  • Johnson, P. (1998). Children’s understanding of changes of state involving the gas state, Part 1: Boiling water and the particle theory. International Journal of Science Education, 20(5), 567-583.
  • Karslı, F. (2011). Fen bilgisi öğretmen adaylarinin bilimsel süreç becerilerini geliştirmesinde ve kavramsal değişim sağlamasında zenginleştirilmiş laboratuvar rehber materyallerinin etkisi. (Yayımlanmamış doktora tezi), Karadeniz Teknik Üniversitesi, Trabzon.
  • Karslı, F., & Ayas, A. (2013a). Prospective science teachers’ alternative conceptions about the chemistry issues. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 7(2), 284-313.
  • Karslı, F., & Ayas, A. (2013b). Is it possible to eliminate alternative conceptions and to improve scientific process skills with different conceptual change methods? ‘An example of electrochemical cells? Journal of Computer and Educational Research, 1(1), 1-26.
  • Karslı, F., & Ayas, A. (2014). Developing a laboratory activity by using 5e learning model on student learning of factors affecting the reaction rate and ımproving scientific process skills. Procedia-Social and Behavioral Sciences, 143, 663-668.
  • Karslı, F., & Çalık, M. (2012). Can freshman science student teachers’ alternative conceptions of ‘electrochemical cells’ be fully diminished? Asian Journal of Chemistry, 23(12), 485-491.
  • Karslı, F., & Kara Patan, K. (2016). Effects of the context- based approach on students’ conceptual understanding: “The Umbra, the Solar Eclipse and the Lunar eclipse”, Journal of Baltic Science Education, 15(2), 246-260.
  • Karslı, F., & Şahin Ç. (2009). Developing worksheet based on science process skills: factors affecting solubility. Asia-Pasific Forum of Learning and Teaching, 10(1), Article 15.
  • Karslı, F., &Yiğit, M. (2015). Effect of context-based learning approach on 12 grade students’ conceptual understanding about alkanes. Inonu University Journal of the Faculty of Education, 16(1), 43-62. DOI:10.17679/iuefd.16124860.
  • Karslı, F., & Yiğit, M. (2016). 12th grade students’ views about an Alkanes Worksheet Based on the REACT Strategy. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 10(1), 472-479.
  • Kayalı, H. A., & Tarhan, L. (2004). İyonik bağlar konusunda kavram yanilgilarinin giderilmesi amacıyla yapılandırmacı aktif öğrenmeye dayalı bir rehber materyal uygulaması. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 27, 145-154.
  • Koray, Ö., Köksal, M. S., Özdemir, M., & Presley, A. İ. (2007). The effect of creative and critical thinking based laboratory applications on academic achievement and science process skills. Elementary Education Online, 6(3), 377-389.
  • Lee, A. T., Hairston, R. V., Thames, R., Lawrence, T., & Herron, S. S. (2002). Using a computer simulation to teach science process skills to college biology and elementary education majors. Computer Simulations Bioscene, 28(4), 35- 42.
  • McElwee, P. (1991). Transition from personal to Scientific understanding. Research in Science and Technological Education, 9(2), 139-156.
  • Mills, R., Tomas, L., & Lewthwaite, B. (2016). Learning in Earth and space science: A review of conceptual change instructional approaches. International Journal of Science Education, 38(5), 767-790
  • Mutlu, A., & Acar Şeşen, B. (2016). Evaluating of preservice science teachers’ understanding of general chemistry concepts by using two tier diagnostic test. Journal of Baltic Science Education, 15(1), 79-96.
  • Nakhleh, M. B,. & Krajcik, J. S. (1994). Influence of levels of information as presented by different technologies on students’ understanding of acid, base, and pH concepts. Journal of Research in Science Teaching, 34(10), 1077-1096.
  • Nieswandt, M. (2001). Problems and possibilities for learning in an introductory chemistry course from a conceptual change perspective. Science Education, 85(2), 158-179.
  • Orgill, M., & Bodner, G. (2004). What research tells us about using analogies to teach chemistry. Chemistry Education Research and Practice in Europe, 5(1), 15-32.
  • Osborne, R., & Cosgrove, M. (1983). Children’s conceptions of the changes of state of water. Journal of Research in Science Teaching, 20(9), 825-838.
  • Özmen, H. (2011). Effect of animation enhanced conceptual change texts on 6th grade students’ understanding of the particulate nature of matter and transformation during phase changes. Computers & Education, 57(1), 1114–1126
  • Özmen, H., Demircioğlu, H., & Demircioğlu, G. (2009). The effects of conceptual change texts accompanied with animations on overcoming 11th grade students’ alternative conceptions of chemical bonding. Computers & Education, 52(3), 681-695.
  • Paik, S. H., Kim, H. N., Cho, B. K., & Park, J. W. (2004). K-8th grade Korean students’ ‘conceptions of changes of state’ and ‘conditions for changes of state’. International Journal of Science Education, 26(2), 207-224.
  • Papageorgiou, G., Johnson, P., & Fotiades, F. (2008) Explaining melting and evaporation below boiling point. Can software help with particle ideas? Research in Science & Technological Education, 26(2), 165-183. DOI: 10.1080/02635140802037336.
  • Pınarbaşı, T., & Canpolat, N. (2003). Students understanding of solutions chemistry concepts. Journal of Chemistry Education, 80(11), 1328-1332.
  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science education, 66(2), 211-227.
  • Prain, P., Tytler, R., & Peterson, S. (2009). Multiple representation in learning about evaporation. International Journal of Science Education, 31(6), 787-808. DOI: 10.1080/09500690701824249.
  • Reid, N. (2008). A scientific approach to the teaching of chemistry. What do we know about how students learn in the sciences, and how can we make our teaching match this to maximise performance? Chemistry Education Research and Practice, 9(1), 51-59. DOI: 10.1039/B801297K.
  • Rollnick, M., Zwane, S., Staskun, M., Lotz, S., & Gren, G. (2001). Improving pre-laboratory preparation of first year university chemistry students. International Journal of Science Education, 23(10), 1053-1071.
  • Russell, T., Harlen, W., & Watt, D. (1989). Children’s ideas about evaporation. International Journal of Science Education, 11(5), 556-576.
  • Sadler, T. D. (2009). Situated learning in science education: Socio scientific issues as contexts for practice. Studies in Science Education, 45(1), 1–42. http://dx.doi.org/10.1080/03057260802681839.
  • Şendur, G., Toprak, M., & Pekmez, E. Ş. (2008). Buharlaşma ve kaynama konularındaki kavram yanılgılarının önlenmesinde analoji yönteminin etkisi. Ege Eğitim Dergisi, 9(2), 37-58.
  • Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10(2), 159-169.
  • Treagust, D. F., & Duit, R. (2008). Conceptual change: a discussion of theoretical, methodological and practical challenges for science education. Cultural Studies of Science Education, 3(2), 297–328.
  • Treagust, D. F., & Chandrasegaran, A. L. (2007). The Taiwan national science concept learning study in an international perspective. Journal of Science Education, 29(4), 391-403. http://dx.doi.org/10.1080/09500690601072790.
  • Tytler, T. (2000). A comparison of year 1 and year 6 students' conceptions of evaporation and condensation: dimensions of conceptual progression. International Journal of Science Education, 22(5), 447-467. DOI: 10.1080/095006900289723.
  • Uzuntiryaki, E., & Geban, Ö. (2005). Effect of conceptual change approach accompanied with concept mapping on understanding of solution concepts. Instructional Science, 33(3), 11-19. DOI:10.1007/s11251-005-2812-z
  • Ünal, S., & Coştu, B. (2005). Problematic issue for students: Does it sink or float? Asia Pacific Forum on Science Learning and Teaching, 6(1), 1.
  • Valanides, N. (2000a). Primary students teachers’ understanding of the process and effects of distillation. Chemistry Education Research and Practice in Europe, 1(3), 355-364.
  • Valanides, N. (2000b). Primary students teachers’ understanding of the particulate nature of matter and ıts transformations during dissolving. Chemistry Education Research and Practice in Europe, 1(2), 249-262.
  • Voska, K. W., & Heikkinen, H. W. (2000). Identification and analysis of student conception used to solve chemical equilibrium problems. Journal of Research in Science Teaching, 37(2), 160-176.

Effect of the Enriched Laboratory Guide Material on Prospective Science Teachers’ Conceptual Change: Evaporation and Boiling*

Year 2017, Volume: 14 Issue: 1, 529 - 561, 03.04.2017

Abstract

 


The aim of this study was to explore the effect of enriched laboratory
guide materials, integrating different conceptual change methods/techniques
according to stages of 5E model on changing prospective science teachers’ alternative
conceptions of “Evaporation and Boiling”. A quasi-experimental method was
employed. The study participants consisted of 97 prospective science teachers who
studied in the science education department of Education Faculty in Giresun University.
The experimental groups used the enriched laboratory guide materials,
integrating different conceptual change methods or techniques such as concept
map (CM), computer animations (CA), conceptual change text (CCT), worksheet and
experiments based on scientific process skills according to stages of 5E model.
The control groups used traditional teaching method as lecture,
questions-answers and close-ended experiments. To collect data, a two-tier
Evaporation and Boiling Concept Questionnaire (EBCQ) were used. The results
showed that the experimental groups were more successful in conceptual change
than the control groups. That is, study results indicate that the learning
environment designed in accordance with the enriched laboratory guide materials
was more efficient than the traditional learning environment in terms of students'
conceptual understanding and changing their' alternative conceptions.








References

  • Abraham, M. R., Gryzybowski, E. B., Renner, J. W., & Marek, A., E. (1992). Understanding and misunderstanding of eighth graders of five chemistry concepts found in textbooks. Journal of Research in Science Teaching, 29(2), 105-120.
  • Aktamış, H., & Ergin, Ö. (2007). Bilimsel süreç becerileri ile bilimsel yaratıcılık arasındaki ilişkinin belirlenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 33, 11-23.
  • Anderson, C. W. (2007). Perspectives on science learning. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 3–30). Mahwah, NJ: Erlbaum.
  • Ayas, A., & Demirbaş, A. (1997). Turkish secondary students’ conception of introductory chemistry concepts. Journal of Chemical Education, 74(5), 518-521.
  • Ayas, A., Özmen, H., & Çalık, M. (2010). Students’ conceptions of the particulate nature of matter at secondary and tertiary level. International Journal of Science and Mathematics Education, 8(1), 165-184. DOI: 10.1007/s10763-009-9167-x
  • Bar, V., & Galili, I. (1994). Stages of children’s views about evaporation. International Journal of Science Education, 16(2), 157-174.
  • Bar, V., & Travis, A. S. (1991). Children’s views concerning phase changes. Journal of Research in Science Teaching, 28(4), 363-382.
  • Beveridge, M. (1985). The development of young children’s understanding of the process of evaporation. British Journal of Educational Psychology, 55(1), 84-90.
  • Bodner, G. M. (1990). Why good teaching fails and hard-working students do not always succeed. Spectrum, 28(1), 27-32.
  • Canpolat, N. Pinarbasi, T., & Sözbilir, M. (2006). Prospective teachers' misconceptions of vaporization and vapor pressure. Journal of Chemical Education, 83(8), 1237. DOİ: 10.1021/ed083p1237.
  • Canpolat, N., Pınarbaşı, T., Bayrakçeken, S., & Geban, Ö. (2004). Kimyadaki bazı yaygın yanlış kavramalar. Gazi Üniversitesi Eğitim Fakültesi Dergisi, 24(1), 135-146.
  • Carey S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). An experiment is when you try it and see if it works”: A study of grade 7 students’ understanding of the construction of scientific knowledge. International Journal of Science Education, 11(5), 514-529.
  • Chang, J. Y. (1999). Teacher college students’ conceptions about evaporation, condensation, and boiling. Science Education, 83(5), 511-526.
  • Coştu, B., & Ayas, A. (2005). Evaporation in different liquids: secondary students’ conceptions. Research in Science & Technological Education, 23(1), 75-97, DOI: 10.1080/02635140500068476.
  • Coştu, B., & Ünal, S. (2005). Le-Chatelier prensibinin çalışma yaprakları ile öğretimi. Yüzüncü Yıl Üniversitesi Elektronik Eğitim Fakültesi Dergisi, 1(1), 1-10.
  • Coştu, B., Ayas, A., Niaz, M., Ünal, S., & Çalık, M. (2007). Facilitating conceptual change in students’ understanding of boiling concept. Journal of Science Education Technology, 16(6), 524-536. DOI:10.1007/s10956-007-9079-x
  • Coştu, B., Karataş, F. Ö., & Ayas, A. (2003). Kavram öğretiminde çalışma yapraklarının kullanılması. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 14(2), 33-48.
  • Çayan, Y., & Karslı, F. (2015). 6. sınıf öğrencilerinin fiziksel ve kimyasal değişim konusundaki kavram yanılgılarının giderilmesinde probleme dayalı öğrenme yaklaşımının etkisi. Kastamonu Eğitim Dergisi, 23(4), 1433-1448.
  • Demircioğlu, G., Demircioğlu, H., & Vural, S. (2015). 5e öğretim modelinin üstün yetenekli öğrencilerin buharlaşma ve yoğuşma kavramlarını anlamaları üzerine etkisi. Kastamonu Eğitim Dergisi, 24(2), 821-838.
  • Diakidoy, I. N., Kendeou, P., & Ioannides, C. (2003). Reading about energy: The effects of text structure in science learning and conceptual change. Contemporary Educational Psychology, 28(3), 335-356.
  • Driver, R., & Easley, J. (1978). Pupils and paradigms: a review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61-84.
  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688, DOI: 10.1080/09500690305016.
  • Ebenezer, J. (2001). A hypermedia environment to explore and negotiate students’ conceptions: animation of the solution process of table salt. Journal of Science Education and Technology, 10(1), 73-91.
  • Finley, F. N., Stewart, J., & Yarroch, W. L. (1982). Teachers' perceptions of important and difficult science content. Science Education, 66(4), 531-538.
  • Garcia, S., Molina, D., Lozano, M., & Herrera, F. (2009). A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. Journal of Heuristics, 15(6), 617-644.
  • Gonzalez, F. M. (1997). Diagnosis of spanish primary school students’ common alternative science concepts. School Science and Mathematics, 97(2), 68-74.
  • Goodwin, A. (2000). The teaching of chemistry: Who is the learner? Chemistry Education Research and Practice in Europe, 1(1), 51-60.
  • Gönen, S., & Akgün, A. (2005). Bilgi eksiklikleri ve kavram yanılgılarının tespiti ve giderilmesinde, çalışma yaprakları ve sınıf içi tartışma yönteminin uygulanabilirliği üzerine bir araştırma. Elektronik Sosyal Bilimler Dergisi, 4(13), 99-111.
  • Hatzinikita V., & Koulaidis, V. (1997). Pupils’ ideas on conservation during changes in the state of water. Research in Science and Technological Education, 15(1), 53-71.
  • Hwang, B. T., & Hwang, H. W. (1990). A Study of Cognitive Development of the Concepts of Solution, Research Report, Taipei, Republic of China: National Science Council.
  • Hyslop-Margison, E. J., & Strobel, J. (2007). Constructivism and education: Misunderstandings and pedagogical implications. The Teacher Educator, 43(1), 72-86, DOI: 10.1080/08878730701728945.
  • Johnson, P. (1998). Children’s understanding of changes of state involving the gas state, Part 1: Boiling water and the particle theory. International Journal of Science Education, 20(5), 567-583.
  • Karslı, F. (2011). Fen bilgisi öğretmen adaylarinin bilimsel süreç becerilerini geliştirmesinde ve kavramsal değişim sağlamasında zenginleştirilmiş laboratuvar rehber materyallerinin etkisi. (Yayımlanmamış doktora tezi), Karadeniz Teknik Üniversitesi, Trabzon.
  • Karslı, F., & Ayas, A. (2013a). Prospective science teachers’ alternative conceptions about the chemistry issues. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 7(2), 284-313.
  • Karslı, F., & Ayas, A. (2013b). Is it possible to eliminate alternative conceptions and to improve scientific process skills with different conceptual change methods? ‘An example of electrochemical cells? Journal of Computer and Educational Research, 1(1), 1-26.
  • Karslı, F., & Ayas, A. (2014). Developing a laboratory activity by using 5e learning model on student learning of factors affecting the reaction rate and ımproving scientific process skills. Procedia-Social and Behavioral Sciences, 143, 663-668.
  • Karslı, F., & Çalık, M. (2012). Can freshman science student teachers’ alternative conceptions of ‘electrochemical cells’ be fully diminished? Asian Journal of Chemistry, 23(12), 485-491.
  • Karslı, F., & Kara Patan, K. (2016). Effects of the context- based approach on students’ conceptual understanding: “The Umbra, the Solar Eclipse and the Lunar eclipse”, Journal of Baltic Science Education, 15(2), 246-260.
  • Karslı, F., & Şahin Ç. (2009). Developing worksheet based on science process skills: factors affecting solubility. Asia-Pasific Forum of Learning and Teaching, 10(1), Article 15.
  • Karslı, F., &Yiğit, M. (2015). Effect of context-based learning approach on 12 grade students’ conceptual understanding about alkanes. Inonu University Journal of the Faculty of Education, 16(1), 43-62. DOI:10.17679/iuefd.16124860.
  • Karslı, F., & Yiğit, M. (2016). 12th grade students’ views about an Alkanes Worksheet Based on the REACT Strategy. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 10(1), 472-479.
  • Kayalı, H. A., & Tarhan, L. (2004). İyonik bağlar konusunda kavram yanilgilarinin giderilmesi amacıyla yapılandırmacı aktif öğrenmeye dayalı bir rehber materyal uygulaması. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 27, 145-154.
  • Koray, Ö., Köksal, M. S., Özdemir, M., & Presley, A. İ. (2007). The effect of creative and critical thinking based laboratory applications on academic achievement and science process skills. Elementary Education Online, 6(3), 377-389.
  • Lee, A. T., Hairston, R. V., Thames, R., Lawrence, T., & Herron, S. S. (2002). Using a computer simulation to teach science process skills to college biology and elementary education majors. Computer Simulations Bioscene, 28(4), 35- 42.
  • McElwee, P. (1991). Transition from personal to Scientific understanding. Research in Science and Technological Education, 9(2), 139-156.
  • Mills, R., Tomas, L., & Lewthwaite, B. (2016). Learning in Earth and space science: A review of conceptual change instructional approaches. International Journal of Science Education, 38(5), 767-790
  • Mutlu, A., & Acar Şeşen, B. (2016). Evaluating of preservice science teachers’ understanding of general chemistry concepts by using two tier diagnostic test. Journal of Baltic Science Education, 15(1), 79-96.
  • Nakhleh, M. B,. & Krajcik, J. S. (1994). Influence of levels of information as presented by different technologies on students’ understanding of acid, base, and pH concepts. Journal of Research in Science Teaching, 34(10), 1077-1096.
  • Nieswandt, M. (2001). Problems and possibilities for learning in an introductory chemistry course from a conceptual change perspective. Science Education, 85(2), 158-179.
  • Orgill, M., & Bodner, G. (2004). What research tells us about using analogies to teach chemistry. Chemistry Education Research and Practice in Europe, 5(1), 15-32.
  • Osborne, R., & Cosgrove, M. (1983). Children’s conceptions of the changes of state of water. Journal of Research in Science Teaching, 20(9), 825-838.
  • Özmen, H. (2011). Effect of animation enhanced conceptual change texts on 6th grade students’ understanding of the particulate nature of matter and transformation during phase changes. Computers & Education, 57(1), 1114–1126
  • Özmen, H., Demircioğlu, H., & Demircioğlu, G. (2009). The effects of conceptual change texts accompanied with animations on overcoming 11th grade students’ alternative conceptions of chemical bonding. Computers & Education, 52(3), 681-695.
  • Paik, S. H., Kim, H. N., Cho, B. K., & Park, J. W. (2004). K-8th grade Korean students’ ‘conceptions of changes of state’ and ‘conditions for changes of state’. International Journal of Science Education, 26(2), 207-224.
  • Papageorgiou, G., Johnson, P., & Fotiades, F. (2008) Explaining melting and evaporation below boiling point. Can software help with particle ideas? Research in Science & Technological Education, 26(2), 165-183. DOI: 10.1080/02635140802037336.
  • Pınarbaşı, T., & Canpolat, N. (2003). Students understanding of solutions chemistry concepts. Journal of Chemistry Education, 80(11), 1328-1332.
  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science education, 66(2), 211-227.
  • Prain, P., Tytler, R., & Peterson, S. (2009). Multiple representation in learning about evaporation. International Journal of Science Education, 31(6), 787-808. DOI: 10.1080/09500690701824249.
  • Reid, N. (2008). A scientific approach to the teaching of chemistry. What do we know about how students learn in the sciences, and how can we make our teaching match this to maximise performance? Chemistry Education Research and Practice, 9(1), 51-59. DOI: 10.1039/B801297K.
  • Rollnick, M., Zwane, S., Staskun, M., Lotz, S., & Gren, G. (2001). Improving pre-laboratory preparation of first year university chemistry students. International Journal of Science Education, 23(10), 1053-1071.
  • Russell, T., Harlen, W., & Watt, D. (1989). Children’s ideas about evaporation. International Journal of Science Education, 11(5), 556-576.
  • Sadler, T. D. (2009). Situated learning in science education: Socio scientific issues as contexts for practice. Studies in Science Education, 45(1), 1–42. http://dx.doi.org/10.1080/03057260802681839.
  • Şendur, G., Toprak, M., & Pekmez, E. Ş. (2008). Buharlaşma ve kaynama konularındaki kavram yanılgılarının önlenmesinde analoji yönteminin etkisi. Ege Eğitim Dergisi, 9(2), 37-58.
  • Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10(2), 159-169.
  • Treagust, D. F., & Duit, R. (2008). Conceptual change: a discussion of theoretical, methodological and practical challenges for science education. Cultural Studies of Science Education, 3(2), 297–328.
  • Treagust, D. F., & Chandrasegaran, A. L. (2007). The Taiwan national science concept learning study in an international perspective. Journal of Science Education, 29(4), 391-403. http://dx.doi.org/10.1080/09500690601072790.
  • Tytler, T. (2000). A comparison of year 1 and year 6 students' conceptions of evaporation and condensation: dimensions of conceptual progression. International Journal of Science Education, 22(5), 447-467. DOI: 10.1080/095006900289723.
  • Uzuntiryaki, E., & Geban, Ö. (2005). Effect of conceptual change approach accompanied with concept mapping on understanding of solution concepts. Instructional Science, 33(3), 11-19. DOI:10.1007/s11251-005-2812-z
  • Ünal, S., & Coştu, B. (2005). Problematic issue for students: Does it sink or float? Asia Pacific Forum on Science Learning and Teaching, 6(1), 1.
  • Valanides, N. (2000a). Primary students teachers’ understanding of the process and effects of distillation. Chemistry Education Research and Practice in Europe, 1(3), 355-364.
  • Valanides, N. (2000b). Primary students teachers’ understanding of the particulate nature of matter and ıts transformations during dissolving. Chemistry Education Research and Practice in Europe, 1(2), 249-262.
  • Voska, K. W., & Heikkinen, H. W. (2000). Identification and analysis of student conception used to solve chemical equilibrium problems. Journal of Research in Science Teaching, 37(2), 160-176.
There are 72 citations in total.

Details

Journal Section Articles
Authors

Fethiye Karslı

Alipaşa Ayas This is me

Publication Date April 3, 2017
Published in Issue Year 2017 Volume: 14 Issue: 1

Cite

APA Karslı, F., & Ayas, A. (2017). Fen Bilimleri Öğretmen Adaylarının Kavramsal Değişimlerine Zenginleştirilmiş Laboratuvar Rehber Materyalinin Etkisi: Buharlaşma ve Kaynama*. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 14(1), 529-561.