Research Article
BibTex RIS Cite

Yapay Zekâ ve Eğitim: Bibliyometrik Analiz Yoluyla Bir Bakış

Year 2024, Volume: 21 Issue: 2, 450 - 470, 16.08.2024
https://doi.org/10.33711/yyuefd.1381074

Abstract

Özellikle son yıllarda yapay zekâ kullanım alanının ve sıklığının arttığı görülmektedir. Bununla birlikte yapay zekâ alanında meydana gelen önemli gelişmelerin eğitimde devrim niteliğinde değişikliklere yol açma potansiyeli olduğu tartışılmaktadır. Eğitim alanında yapay zekâ konusunda yapılan çalışmaların incelenmesi ve değerlendirilmesi yapay zekânın öğrenme deneyimlerini etkili ve verimli kılma potansiyelinin gerçekleşmesi açısından gerekli görülmektedir. Bu çalışmada eğitim alanında yapay zekâ çalışmaları incelenerek eğilimlerin ortaya konması amaçlanmıştır. Bu amaca yönelik olarak çalışmaların yıllar içerisindeki değişimi, yapay zekâyla birlikte ele alınan konuların belirlenmesi, bu konuların zaman içerisindeki değişimi, yayınların ve yazarların performansına ilişkin göstergelerin bulunması hedeflenmiştir. Sistematik literatür taraması olarak tasarlanan bu çalışmada uluslararası alanyazında en çok atıf alan ve kaliteli yayınların yer aldığı kabul edilen ayrıca sistematik literatür çalışması için gerekli uygun verileri indirme ve analiz etme imkânı sunan Web of Science veri tabanından yararlanılmıştır. Sorgulamalar sonucunda elde edilen 1164 yayına ait analizler sonucunda, eğitim alanında yapay zekâ konusundaki çalışmaların 1980’li yıllara kadar uzandığı görülmekle birlikte, özellikle son beş yılda pozitif yönde bir kırılma yaşanmış ve yayınların sayısında büyük bir artış ortaya çıkmıştır. En fazla yayın, teknoloji temalı eğitim dergilerinde yer almıştır. Bununla birlikte İspanyolca, Rusça, Portekizce gibi farklı dillerde yayınlar olmasına rağmen, İngilizce’nin (%92- 1074) eğitimde yapay zekâ konusunda çok daha fazla tercih edildiği görülmüştür.

References

  • Alam, A. (2022). Employing adaptive learning and intelligent tutoring robots for virtual classrooms and smart campuses: reforming education in the age of artificial intelligence. In Advanced Computing and Intelligent Technologies: Proceedings of ICACIT 2022 (pp. 395-406). Singapore: Springer Nature Singapore.
  • Cardona, T., Cudney, E. A., Hoerl, R., & Snyder, J. (2023). Data mining and machine learning retention models in higher education. Journal of College Student Retention: Research, Theory & Practice, 25(1), 51-75. https://doi.org/10.1177/1521025120964920
  • Chatti, M. A., Dyckhoff, A. L., Schroeder, U., & Thüs, H. (2012). A reference model for learning analytics. International Journal of Technology Enhanced Learning, 4(5-6), 318-331. https://doi.org/10.1504/IJTEL.2012.051815
  • Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264-75278. https://doi.org/10.1109/access.2020.2988510
  • Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two decades of artificial intelligence in education. Educational Technology & Society, 25(1), 28-47. Retrieved from https://www.jstor.org/stable/48647028
  • Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, 100118. https://doi.org/10.1016/j.caeai.2022.100118
  • Chng, E., Tan, A. L., & Tan, S. C. (2023). Examining the Use of Emerging Technologies in Schools: a Review of Artificial Intelligence and Immersive Technologies in STEM Education. Journal for STEM Education Research, 1-23. https://doi.org/10.1007/s41979-023-00092-y
  • Chocarro, R., Cortinas, M., & Marcos-Matas, G. (2023). Teachers’ attitudes towards chatbots in education: A technology acceptance model approach considering the effect of social language, bot proactiveness, and users’ characteristics. Educational Studies, 49(2), 295–313. https://doi.org/10.1080/03055698.2020.1850426
  • Dalipi, F., Imran, A. S., & Kastrati, Z. (2018, April). MOOC dropout prediction using machine learning techniques: Review and research challenges. In 2018 IEEE global engineering education conference (EDUCON) (pp. 1007-1014). IEEE. https://doi.org/10.1109/educon.2018.8363340
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data—Evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
  • Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB JOURNAL, 22(2), 338–342. https://doi.org/10.1096/fj.07-9492LSF
  • García, P., Amandi, A., Schiaffino, S., & Campo, M. (2007). Evaluating Bayesian networks’ precision for detecting students’ learning styles. Computers & Education, 49(3), 794-808. https://doi.org/10.1016/j.compedu.2005.11.017
  • Goralski, M. A., & Tan, T. K. (2020). Artificial intelligence and sustainable development. The International Journal of Management Education, 18(1), 100330. https://doi.org/10.1016/j.ijme.2019.100330
  • Harzing, A.-W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics, 106(2), 787–804. https://doi.org/10.1007/s11192-015-1798-9
  • Hinojo-Lucena, F. J., Aznar-Díaz, I., Cáceres-Reche, M. P., & Romero-Rodríguez, J. M. (2019). Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature. Education Sciences, 9(1), 51. https://doi.org/10.3390/educsci9010051
  • Holmes, W., Persson, J., Chounta, I. A., Wasson, B., & Dimitrova, V. (2022). Artificial intelligence and education: A critical view through the lens of human rights, democracy and the rule of law. Council of Europe. Hwang, G. J. (2003). A conceptual map model for developing intelligent tutoring systems. Computers & Education, 40(3), 217-235. https://doi.org/10.1016/S0360-1315(02)00121-5
  • Linnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175–194. https://doi.org/10.1177/0312896219877678
  • Lo, C. K. (2023). What Is the Impact of ChatGPT on Education? A Rapid Review of the Literature. Education Sciences, 13(4), 410. https://doi.org/10.3390/educsci13040410
  • Lund, B. D., Wang, T., Mannuru, N. R., Nie, B., Shimray, S., & Wang, Z. (2023). ChatGPT and a new academic reality: Artificial Intelligence-written research papers and the ethics of the large language models in scholarly publishing. Journal of the Association For Information Science And Technology, 74(5), 570–581. https://doi.org/10.1002/asi.24750
  • Minh, D., Wang, H. X., Li, Y. F., & Nguyen, T. N. (2022). Explainable artificial intelligence: A comprehensive review. Artificial Intelligence Review, 55(5), 3503–3568. https://doi.org/10.1007/s10462-021-10088-y
  • Ninkov, A., Frank, J. R., & Maggio, L. A. (2022). Bibliometrics: Methods for studying academic publishing. Perspectives on Medical Education, 11(3), 173–176. https://doi.org/10.1007/s40037-021-00695-4
  • Norvig, P., & Russell, S. (2011). Artificial Intelligence: A Modern Approach. Pearson Education. Pati, D., & Lorusso, L. N. (2018). How to write a systematic review of the literature. HERD: Health Environments Research & Design Journal, 11(1), 15-30. https://doi.org/10.1177/1937586717747384
  • Peng, Y., Liu, E., Peng, S., Chen, Q., Li, D., & Lian, D. (2022). Using artificial intelligence technology to fight COVID-19: A review. Artificial Intelligence Review, 55(6), 4941–4977. https://doi.org/10.1007/s10462-021-10106-z
  • Pereira, V., Basilio, M., & Santos, C. (2023). pyBibX -- A Python Library for Bibliometric and Scientometric Analysis Powered with Artificial Intelligence Tools.
  • Prahani, B. K., Rizki, I. A., Jatmiko, B., Suprapto, N., & Amelia, T. (2022). Artificial Intelligence in Education Research During the Last Ten Years: A Review and Bibliometric Study. International Journal of Emerging Technologies in Learning, 17(8), 169-188. https://doi.org/10.3991/ijet.v17i08.29833
  • Schiff, D. (2021). Out of the laboratory and into the classroom: the future of artificial intelligence in education. Artificial Intelligence & Society, 36(1), 331-348. https://doi.org/10.1007/s00146-020-01033-8
  • Seldon, A., & Abidoye, O. (2018). The Fourth Education Revolution. Legend Press Ltd.
  • Seo, K., Tang, J., Roll, I., Fels, S., & Yoon, D. (2021). The impact of artificial intelligence on learner–instructor interaction in online learning. International journal of educational technology in higher education, 18(1), 1-23. https://doi.org/10.1186/s41239-021-00292-9
  • Song, P., & Wang, X. (2020). A bibliometric analysis of worldwide educational artificial intelligence research development in recent twenty years. Asia Pacific Education Review, 21(3), 473–486. https://doi.org/10.1007/s12564-020-09640-2
  • Talan, T. (2021). Artificial Intelligence in Education: A Bibliometric Study. International Journal of Research in Education and Science, 7(3), 822-837. https://doi.org/10.46328/ijres.2409
  • Terzi, R. (2020). An Adaptation of AI Anxiety Scale into Turkish: Reliability and Validity Study. International Online Journal of Education and Teaching, 7(4), 1501-1515. Retrieved from https://files.eric.ed.gov/fulltext/EJ1271031.pdf
  • Tlili, A., Shehata, B., Adarkwah, M. A., Bozkurt, A., Hickey, D. T., Huang, R., & Agyemang, B. (2023). What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learning Environments, 10(1), 15. https://doi.org/10.1186/s40561-023-00237-x
  • UNESCO. (2021). AI and education: Guidance for policy-makers. UNESCO. https://doi.org/10.54675/PCSP7350 Treve, M. (2021). What COVID-19 has introduced into education: Challenges facing higher education institutions (HEIs). Higher Education Pedagogies, 6(1), 212-227. https://doi.org/10.1080/23752696.2021.1951616
  • Xie, H., Chu, H.-C., Hwang, G.-J., & Wang, C.-C. (2019). Trends and development in technology-enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017. Computers & Education, 140, 103599. https://doi.org/10.1016/j.compedu.2019.103599
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators?. International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0
  • Zhang, K., & Aslan, A. B. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial Intelligence, 2, 100025. https://doi.org/10.1016/j.caeai.2021.100025

Artificial Intelligence and Education: An Insight Through Bibliometric Analysis

Year 2024, Volume: 21 Issue: 2, 450 - 470, 16.08.2024
https://doi.org/10.33711/yyuefd.1381074

Abstract

The utilization of artificial intelligence has experienced significant growth and expansion in recent years. The education field is not an exception, and this development holds the potential for revolutionary impacts on the educational landscape. These radical effects can improve learning experiences by making them more effective and efficient. The objective of this research is to illustrate the evolution of the artificial intelligence landscape within education, identifying shifts in research focus over time and assessing the performance of publications and authors. This study was designed as a systematic literature review. Data were collected from the Web of Science database, which is considered to contain the most cited and high-quality publications in the international literature and offers the opportunity to download and analyze the appropriate data required for systematic literature reviews. After the queries which contain filters to obtain pertinent literature 1164 publications have been found. Although studies on artificial intelligence in the field of education can be traced back to the 1980s, the majority of publications have emerged within the last five years. Notably, journals centred on technology in education have published the highest number of articles. While publications in various languages, such as Spanish, Russian, and Portuguese, exist, English (92% - 1074) serves as the lingua franca for discussions on artificial intelligence in education.

References

  • Alam, A. (2022). Employing adaptive learning and intelligent tutoring robots for virtual classrooms and smart campuses: reforming education in the age of artificial intelligence. In Advanced Computing and Intelligent Technologies: Proceedings of ICACIT 2022 (pp. 395-406). Singapore: Springer Nature Singapore.
  • Cardona, T., Cudney, E. A., Hoerl, R., & Snyder, J. (2023). Data mining and machine learning retention models in higher education. Journal of College Student Retention: Research, Theory & Practice, 25(1), 51-75. https://doi.org/10.1177/1521025120964920
  • Chatti, M. A., Dyckhoff, A. L., Schroeder, U., & Thüs, H. (2012). A reference model for learning analytics. International Journal of Technology Enhanced Learning, 4(5-6), 318-331. https://doi.org/10.1504/IJTEL.2012.051815
  • Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264-75278. https://doi.org/10.1109/access.2020.2988510
  • Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two decades of artificial intelligence in education. Educational Technology & Society, 25(1), 28-47. Retrieved from https://www.jstor.org/stable/48647028
  • Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, 100118. https://doi.org/10.1016/j.caeai.2022.100118
  • Chng, E., Tan, A. L., & Tan, S. C. (2023). Examining the Use of Emerging Technologies in Schools: a Review of Artificial Intelligence and Immersive Technologies in STEM Education. Journal for STEM Education Research, 1-23. https://doi.org/10.1007/s41979-023-00092-y
  • Chocarro, R., Cortinas, M., & Marcos-Matas, G. (2023). Teachers’ attitudes towards chatbots in education: A technology acceptance model approach considering the effect of social language, bot proactiveness, and users’ characteristics. Educational Studies, 49(2), 295–313. https://doi.org/10.1080/03055698.2020.1850426
  • Dalipi, F., Imran, A. S., & Kastrati, Z. (2018, April). MOOC dropout prediction using machine learning techniques: Review and research challenges. In 2018 IEEE global engineering education conference (EDUCON) (pp. 1007-1014). IEEE. https://doi.org/10.1109/educon.2018.8363340
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data—Evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
  • Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB JOURNAL, 22(2), 338–342. https://doi.org/10.1096/fj.07-9492LSF
  • García, P., Amandi, A., Schiaffino, S., & Campo, M. (2007). Evaluating Bayesian networks’ precision for detecting students’ learning styles. Computers & Education, 49(3), 794-808. https://doi.org/10.1016/j.compedu.2005.11.017
  • Goralski, M. A., & Tan, T. K. (2020). Artificial intelligence and sustainable development. The International Journal of Management Education, 18(1), 100330. https://doi.org/10.1016/j.ijme.2019.100330
  • Harzing, A.-W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics, 106(2), 787–804. https://doi.org/10.1007/s11192-015-1798-9
  • Hinojo-Lucena, F. J., Aznar-Díaz, I., Cáceres-Reche, M. P., & Romero-Rodríguez, J. M. (2019). Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature. Education Sciences, 9(1), 51. https://doi.org/10.3390/educsci9010051
  • Holmes, W., Persson, J., Chounta, I. A., Wasson, B., & Dimitrova, V. (2022). Artificial intelligence and education: A critical view through the lens of human rights, democracy and the rule of law. Council of Europe. Hwang, G. J. (2003). A conceptual map model for developing intelligent tutoring systems. Computers & Education, 40(3), 217-235. https://doi.org/10.1016/S0360-1315(02)00121-5
  • Linnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175–194. https://doi.org/10.1177/0312896219877678
  • Lo, C. K. (2023). What Is the Impact of ChatGPT on Education? A Rapid Review of the Literature. Education Sciences, 13(4), 410. https://doi.org/10.3390/educsci13040410
  • Lund, B. D., Wang, T., Mannuru, N. R., Nie, B., Shimray, S., & Wang, Z. (2023). ChatGPT and a new academic reality: Artificial Intelligence-written research papers and the ethics of the large language models in scholarly publishing. Journal of the Association For Information Science And Technology, 74(5), 570–581. https://doi.org/10.1002/asi.24750
  • Minh, D., Wang, H. X., Li, Y. F., & Nguyen, T. N. (2022). Explainable artificial intelligence: A comprehensive review. Artificial Intelligence Review, 55(5), 3503–3568. https://doi.org/10.1007/s10462-021-10088-y
  • Ninkov, A., Frank, J. R., & Maggio, L. A. (2022). Bibliometrics: Methods for studying academic publishing. Perspectives on Medical Education, 11(3), 173–176. https://doi.org/10.1007/s40037-021-00695-4
  • Norvig, P., & Russell, S. (2011). Artificial Intelligence: A Modern Approach. Pearson Education. Pati, D., & Lorusso, L. N. (2018). How to write a systematic review of the literature. HERD: Health Environments Research & Design Journal, 11(1), 15-30. https://doi.org/10.1177/1937586717747384
  • Peng, Y., Liu, E., Peng, S., Chen, Q., Li, D., & Lian, D. (2022). Using artificial intelligence technology to fight COVID-19: A review. Artificial Intelligence Review, 55(6), 4941–4977. https://doi.org/10.1007/s10462-021-10106-z
  • Pereira, V., Basilio, M., & Santos, C. (2023). pyBibX -- A Python Library for Bibliometric and Scientometric Analysis Powered with Artificial Intelligence Tools.
  • Prahani, B. K., Rizki, I. A., Jatmiko, B., Suprapto, N., & Amelia, T. (2022). Artificial Intelligence in Education Research During the Last Ten Years: A Review and Bibliometric Study. International Journal of Emerging Technologies in Learning, 17(8), 169-188. https://doi.org/10.3991/ijet.v17i08.29833
  • Schiff, D. (2021). Out of the laboratory and into the classroom: the future of artificial intelligence in education. Artificial Intelligence & Society, 36(1), 331-348. https://doi.org/10.1007/s00146-020-01033-8
  • Seldon, A., & Abidoye, O. (2018). The Fourth Education Revolution. Legend Press Ltd.
  • Seo, K., Tang, J., Roll, I., Fels, S., & Yoon, D. (2021). The impact of artificial intelligence on learner–instructor interaction in online learning. International journal of educational technology in higher education, 18(1), 1-23. https://doi.org/10.1186/s41239-021-00292-9
  • Song, P., & Wang, X. (2020). A bibliometric analysis of worldwide educational artificial intelligence research development in recent twenty years. Asia Pacific Education Review, 21(3), 473–486. https://doi.org/10.1007/s12564-020-09640-2
  • Talan, T. (2021). Artificial Intelligence in Education: A Bibliometric Study. International Journal of Research in Education and Science, 7(3), 822-837. https://doi.org/10.46328/ijres.2409
  • Terzi, R. (2020). An Adaptation of AI Anxiety Scale into Turkish: Reliability and Validity Study. International Online Journal of Education and Teaching, 7(4), 1501-1515. Retrieved from https://files.eric.ed.gov/fulltext/EJ1271031.pdf
  • Tlili, A., Shehata, B., Adarkwah, M. A., Bozkurt, A., Hickey, D. T., Huang, R., & Agyemang, B. (2023). What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learning Environments, 10(1), 15. https://doi.org/10.1186/s40561-023-00237-x
  • UNESCO. (2021). AI and education: Guidance for policy-makers. UNESCO. https://doi.org/10.54675/PCSP7350 Treve, M. (2021). What COVID-19 has introduced into education: Challenges facing higher education institutions (HEIs). Higher Education Pedagogies, 6(1), 212-227. https://doi.org/10.1080/23752696.2021.1951616
  • Xie, H., Chu, H.-C., Hwang, G.-J., & Wang, C.-C. (2019). Trends and development in technology-enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017. Computers & Education, 140, 103599. https://doi.org/10.1016/j.compedu.2019.103599
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators?. International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0
  • Zhang, K., & Aslan, A. B. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial Intelligence, 2, 100025. https://doi.org/10.1016/j.caeai.2021.100025
There are 37 citations in total.

Details

Primary Language English
Subjects Educational Technology and Computing
Journal Section Articles
Authors

Mehmet Uysal 0000-0003-1387-2476

Murat Topal 0000-0001-5270-426X

Zeliha Demir Kaymak 0000-0002-9317-9198

Early Pub Date August 12, 2024
Publication Date August 16, 2024
Submission Date October 25, 2023
Acceptance Date May 18, 2024
Published in Issue Year 2024 Volume: 21 Issue: 2

Cite

APA Uysal, M., Topal, M., & Demir Kaymak, Z. (2024). Artificial Intelligence and Education: An Insight Through Bibliometric Analysis. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 21(2), 450-470. https://doi.org/10.33711/yyuefd.1381074