Research Article
BibTex RIS Cite

Gökkuşağı Alabalıklarından (Oncorhynchus mykiss) İzole Edilen Patojen Bakteri İzolatlarının Hidrolitik Enzim Aktiviteleri ve Siderofor Üretim Yetenekleri

Year 2022, , 512 - 520, 25.12.2022
https://doi.org/10.53433/yyufbed.1082784

Abstract

Kısa sürede büyük miktarlarda kültürlenebilmeleri, genetik manipülasyonlara açık olmaları ve ürettikleri enzimlerin hayvansal ve bitkisel enzimlerden daha aktif ve istikrarlı oluşu bakterilerin çok önemli enzim ve ikincil metabolit kaynakları olarak değerlendirilmelerine sebep olmaktadır. Ayrıca ekstraselüler hidrolitik enzimler ve sideroforlar patojen bakteriler için çok önemli virülans faktörleri olarak bilinmektedir. Bu çalışmada, Van ilinde faaliyet gösteren çiftliklerde, gökkuşağı alabalıklarından (Oncorhynchus mykiss) izole edilerek kültüre alınmış dokuz adet bakteri izolatının çeşitli ekstraselüler hidrolitik enzimleri ve siderofor üretme yetenekleri ilk defa araştırılmıştır. Sonuçlar, test edilen izolatlardan dokuzunun proteaz, sekizinin lipaz, beşinin selülaz, ikisinin pektinaz aktivitesine sahip olduğu, ayrıca yedisinin siderofor üretme yeteneğine sahip olduğunu göstermiştir. Amilaz ve ksilinaz aktiviteleri hiçbir izolatta gözlemlenmemiştir. Ayrıca bu izolatlar morfolojik olarak olası üç ana gruba ayrılmış ve her bir izolat, türe özel geliştirilmiş primerler ile moleküler tanımlamaya tabi tutulmuştur. Türe özgü primerler kullanılarak yapılan moleküler tanımlama, bu izolatların balık patojeni Listonella anguillarum, Yersinia ruckeri ve Lactococcus garvieae olduklarını ortaya koymuştur.

Thanks

Bu çalışmada pozitif kontrol olarak kullanılan Y. ruckeri kültür izolatları Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenen FBA-2018-6895 numaralı projeden, L. garvieae ve L. anguillarum kültür izolatları ise Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenen FYL-2019-7463 numaralı projeden kullanılarak gerçekleştirilmiştir.

References

  • Amore, A., Parameswaran, B., Kumar, R., Birolo, L., Vinciguerra, R., Marcolongo, L., Ionata, E., La Cara, F., Pandey, A., & Faraco, V. (2015). Appli¬cation of a new xylanase activity from Bacillus amyloliquefaciens XR44A in brewer’s spent grain saccharification. Journal of Chemical Technology & Biotechnology, 90, 573-581. doi: 10.1002/jctb.4589
  • Aoki, T., Park, C. I., Yamashita, H., & Hirono, I. (2000). Species‐specific polymerase chain reaction primers for Lactococcus garvieae. Journal of Fish Diseases, 23, 1-6. doi: 10.1046/j.1365-2761.2000.00207.x
  • Bairagi, A., Ghosh, K. S., Sen, S. K., & Ray, A. K. (2002). Enzyme producing bacterial flora isolated from fish digestive tracts. Aquaculture International, 10, 109-121. doi: 10.1023/A:1021355406412
  • Butt, R. L., & Volkoff, H. (2019). Gut Microbiota and Energy Homeostasis in Fish. Frontiers in Endocrinology (Lausanne), 10, 9. doi: 10.3389/fendo.2019.00009
  • Carrim, A. J. I., Barbosa, E., & Vieira, J. D. G. (2006). Enzymatic activity of endophytic bacterial isolates of Jacaranda decurrens Cham (Carobinha-do-campo). Brazilian Archives of Biology and Technology, 49, 353–359. doi: 10.1590/S1516-89132006000400001
  • Das, P., Mandal, S., Khan, A., Manna, S. K., & Ghosh, K. (2014). Distribution of extracellular enzyme-producing bacteria in the digestive tracts of 4 brackish water fish species. Turkish Journal of Zoology, 38, 79-88. doi: 10.3906/zoo-1205-3
  • Dogan, G., & Taskin, B. (2021). Hydrolytic Enzymes Producing Bacterial Endophytes of Some Poaceae Plants. Polish Journal of Microbiology, 70, 297-304. doi:10.33073/pjm-2021-026
  • Esakkiraj, P., Immanuel, G., Sowmya, S. M., Iyapparaj, P., & Palavesam, A. (2009). Evaluation of protease-producing ability of fish gut isolate Bacillus cereus. Food and Bioprocess Technology, 2. 383-390. doi: 10.1007/s11947-007-0046-6
  • Fasim, A., More, V. S., & More, S. S. (2021). Large-scale production of enzymes for biotechnology uses. Current Opinion in Biotechnology, 69, 68-76. doi: 10.1016/j.copbio.2020.12.002
  • Fernández, L., Méndez, J., & Guijarro, J. A. (2007). Molecular virulence mechanisms of the fish pathogen Yersinia ruckeri. Veterinary microbiology, 125, 1-10. doi: 10.1016/j.vetmic.2007.06.013
  • German, D. P., & Bittong, R. A. (2009). Digestive enzyme activities and gastrointestinal fermentation in wood-eating catfishes. Journal of Comparative Physiology B, 179, 1025-42. doi: 10.1007/s00360-009-0383-z
  • Gibello, A., Blanco, M. M., Moreno, M. A., Cutuli, M. T., Domenech, A., Domínguez, L., & Fernández-Garayzábal, J. F. (1999). Development of a PCR assay for detection of Yersinia ruckeri in tissues of inoculated and naturally infected trout. Applied and Environmental Microbiology, 65, 346-50. doi: 10.1128/AEM.65.1.346-350.1999
  • Gonzalez, S. F., Osorio, C. R., & Santos, Y. (2003). Development of a PCR-based method for the detection of Listonella anguillarum in fish tissues and blood samples. Diseases of Aquatic Organisms, 55, 109-15. doi:10.3354/dao055109
  • Hankin, L., & Anagnostakis, S. L. (1975). The use of solid media for detection of enzyme production by fungi. Mycologia, 67, 597-607. doi: 10.2307/3758395
  • Hossain, T. J., Chowdhury, S. I., Mozumder, H. A., Chowdhury, M. N., Ali, F., Rahman, N., & Dey, S. (2020). Hydrolytic Exoenzymes Produced by Bacteria Isolated and Identified from the Gastrointestinal Tract of Bombay Duck. Frontiers in Microbiology, 11, 2097. doi: 10.3389/fmicb.2020.0209
  • Ina-Salwany, M. Y., Al-Saari, N., Mohamad, A., Mursidi, F. A., Mohd-Aris, A., Amal, M. N. A., Kasai, H., Mino, S., Sawabe, T., & Zamri-Saad, M. (2019). Vibriosis in fish: A review on disease development and prevention. Journal of Aquatic Animal Health, 31, 3-22. doi: 10.1002/aah.10045
  • Jalgaonwala, R. E., & Mahajan, R. T. (2011). Evaluation of hydrolytic enzyme activities of endophytes from some indigenous medicinal plants. Journal of Agricultural Technology, 7, 1733–1741.
  • Kar, N., & Ghosh, K. (2008). Enzyme producing bacteria in the gastrointestinal tracts of Labeo rohita (Hamilton) and Channa punctatus (Bloch). Turkish Journal of Fisheries and Aquatic Sciences, 8, 115-120.
  • Khan, L. A., Shahzad, R., Al-Harrasi, A., & Lee, J. I. (2017). Endophytic microbes: A resource for producing extracellular enzymes. In D. K. Maheshwari, & K. Annapurna (Eds.), Endophytes: Crop Productivity and Protection (pp. 95-110). Springer, Cham. doi: 10.1007/978-3-319-66544-3_5
  • Kobayashi, T., Koike, K., Yoshimatsu, T., Higaki, N., Suzumatsu, A., Ozawa, T., Hatada, Y., & Ito, S. (1999). Purification and properties of a low-molecular-weight, high-alkaline pectate lyase from an alkaliphilic strain of Bacillus. Bioscience, Biotechnology and Biochemistry, 63, 65–72. doi: 10.1271/bbb.63.65
  • Koca, S. B., Yigit, N. Ö., Didinen, B. I., Metin, S., Bayrak, H., Onuk, E. E., & Diler, İ. (2015). Effects of enzyme-producing probiotic bacteria isolated from the gastrointestinal tract of trout on the growth performance, survival and digestive enzyme activity of rainbow trout fry (Oncorhynchus mykiss). The Israeli Journal of Aquaculture-Bamidgeh, 67, 2015. doi: 10.46989/001c.20695
  • Lemos, M. L., & Balado, M. (2020). Iron uptake mechanisms as key virulence factors in bacterial fish pathogens. Journal of Applied Microbiology, 129, 104-115. doi: 10.1111/jam.14595
  • Lewis, K., Epstein, S., D'Onofrio, A., & Ling, L. L. (2010). Uncultured microorganisms as a source of secondary metabolites. The Journal of Antibiotics, 63, 468-76. doi: 10.1038/ja.2010.87
  • Louden, B. C., Haarmann, D., & Lynne, A. M. (2011). Use of Blue Agar CAS Assay for Siderophore Detection. Journal of Microbiology & Biology Education, 12, 51-3. doi: 10.1128/jmbe.v12i1.249
  • Malathi, S., Priya, D. M., & Palani, P. (2014). Optimization of Protease Enzyme Production by the Halo-Tolerant Vibrio alginolyticus Isolated from Marine Sources. In: R. Kharwar, R. Upadhyay, N. Dubey, & R. Raghuwanshi (Eds.), Microbial Diversity and Biotechnology in Food Security. Springer, New Delhi. doi: 10.1007/978-81-322-1801-2_40
  • Mountfort, D. O., Grant, W. D., Morgan, H., Rainey, F. A., & Stackebrandt, E. (1993). Isolation and characterization of an obligately anaerobic, pectinolytic member of the genus Eubacterium from mullet gut. Archives of Microbiology, 159, 289–295. doi: 10.1007/BF00248486
  • Nath, D., & Rao, M. (2001). pH dependent conformational and structural changes of xylanase from an alkalophilic thermophilic Bacillus sp (NCIM 59). Enzyme and Microbial Technology, 28, 397–403. doi: 10.1016/S0141-0229(00)00359-8
  • O'Brien, S., Hodgson, D. J., & Buckling, A. (2014). Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proceedings of the Royal Society B: Biological Sciences, 281, 20140858. doi: 10.1098/rspb.2014.0858
  • Önalan, Ş. (2019). Expression differences of stress and immunity genes in rainbow trout (Oncorhynchus mykiss, Walbaum 1792) with different bacterial fish diseases. The Israeli Journal of Aquaculture-Bamidgeh, 71, 1-15. doi:10.46989/001c.20978
  • Önalan, Ş., & Çevik, M. (2020). Investigation of the effects of some phytochemicals on Yersinia ruckeri and antimicrobial resistance. Brazilian Journal of Biology, 80, 934-942. doi: 10.1590/1519-6984.234969
  • Ray, A. K., Ghosh, K., & Ringø, E. J. A. N. (2012). Enzyme‐producing bacteria isolated from fish gut: A review. Aquaculture Nutrition, 18, 465-492. doi: 10.1111/j.1365-2095.2012.00943.x
  • Romalde, J. L., Conchas, R. F., & Toranzo, A. E. (1991). Evidence that Yersinia ruckeri possesses a high affinity iron uptake system. FEMS Microbiol Letters, 64, 121–125. doi: 10.1016/0378-1097(91)90581-t.
  • Sarwar, S., Khaliq, A., Yousra, M., & Sultan, T. (2022). Iron biofortification potential of siderophore producing rhizobacterial strains for improving growth, yield and iron contents of groundnut. Journal of Plant Nutrition, 45, 2332-2347. doi: 10.1080/01904167.2022.2063733
  • Sasmal, M., & Ray, R. R. (2015). Production of extracellular enzymes by the gut and gill microflora of Tilapia fish (Oreochromis niloticus). Asian Journal of Multidisciplanary Studies, 3, 44–49. doi: 10.5376/ija.2017.07.0023
  • Schmidtke, L. M., & Carson, J. (2003). Antigen recognition by rainbow trout (Oncorhynchus mykiss) of whole cell proteins expressed by Lactococcus garvieae when obtained directly from fish and under iron limited culture conditions. Veterinary Microbiology, 93, 63-71. doi: 10.1016/s0378-1135(02)00440-6
  • Sheldon, J. R., Laakso, H. A., & Heinrichs, D. E. (2016). Iron acquisition strategies of bacterial pathogens. Microbiology Spectrum, 4, 4-2. doi: 10.1128/microbiolspec.VMBF-0010-2015
  • Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6, 174. doi: 10.1007/s13205-016-0485-8
  • Soares, E. V. (2022). Perspective on the biotechnological production of bacterial siderophores and their use. Applied Microbiology and Biotechnology, 106, 3985-4004. doi: 10.1007/s00253-022-11995-y

Hydrolytic Enzyme Activities and Siderophore Production Capabilities of Pathogenic Bacterial Isolates from Rainbow Trout (Oncorhynchus mykiss)

Year 2022, , 512 - 520, 25.12.2022
https://doi.org/10.53433/yyufbed.1082784

Abstract

The fact that they can be cultured in large quantities in a short time, that they are open to genetic manipulations, and that the enzymes they produce are more active and stable than animal and plant enzymes, cause bacteria to be considered as very important enzyme and secondary metabolite sources. Also, extracellular hydrolytic enzymes and siderophores are known as very important virulence factors for pathogenic bacteria. In this study, the ability to produce various extracellular hydrolytic enzymes and siderophores of nine bacterial isolates isolated from rainbow trout (Oncorhynchus mykiss) from farms operating in Van province was investigated for the first time. The results showed that of the tested bacteria, nine had protease, eight had lipase, five had cellulase, two had pectinase activity, and seven had the ability to produce siderophores. Amylase and xylanase activities were not observed in any isolate. In addition, these isolates were morphologically divided into three possible main groups and three isolates from each group were molecularly identified with primers developed specifically for the species. Molecular identification using species-specific primers revealed that these isolates could be the strains of fish pathogens Listonella anguillarum, Yersinia ruckeri and Lactococcus garvieae.

References

  • Amore, A., Parameswaran, B., Kumar, R., Birolo, L., Vinciguerra, R., Marcolongo, L., Ionata, E., La Cara, F., Pandey, A., & Faraco, V. (2015). Appli¬cation of a new xylanase activity from Bacillus amyloliquefaciens XR44A in brewer’s spent grain saccharification. Journal of Chemical Technology & Biotechnology, 90, 573-581. doi: 10.1002/jctb.4589
  • Aoki, T., Park, C. I., Yamashita, H., & Hirono, I. (2000). Species‐specific polymerase chain reaction primers for Lactococcus garvieae. Journal of Fish Diseases, 23, 1-6. doi: 10.1046/j.1365-2761.2000.00207.x
  • Bairagi, A., Ghosh, K. S., Sen, S. K., & Ray, A. K. (2002). Enzyme producing bacterial flora isolated from fish digestive tracts. Aquaculture International, 10, 109-121. doi: 10.1023/A:1021355406412
  • Butt, R. L., & Volkoff, H. (2019). Gut Microbiota and Energy Homeostasis in Fish. Frontiers in Endocrinology (Lausanne), 10, 9. doi: 10.3389/fendo.2019.00009
  • Carrim, A. J. I., Barbosa, E., & Vieira, J. D. G. (2006). Enzymatic activity of endophytic bacterial isolates of Jacaranda decurrens Cham (Carobinha-do-campo). Brazilian Archives of Biology and Technology, 49, 353–359. doi: 10.1590/S1516-89132006000400001
  • Das, P., Mandal, S., Khan, A., Manna, S. K., & Ghosh, K. (2014). Distribution of extracellular enzyme-producing bacteria in the digestive tracts of 4 brackish water fish species. Turkish Journal of Zoology, 38, 79-88. doi: 10.3906/zoo-1205-3
  • Dogan, G., & Taskin, B. (2021). Hydrolytic Enzymes Producing Bacterial Endophytes of Some Poaceae Plants. Polish Journal of Microbiology, 70, 297-304. doi:10.33073/pjm-2021-026
  • Esakkiraj, P., Immanuel, G., Sowmya, S. M., Iyapparaj, P., & Palavesam, A. (2009). Evaluation of protease-producing ability of fish gut isolate Bacillus cereus. Food and Bioprocess Technology, 2. 383-390. doi: 10.1007/s11947-007-0046-6
  • Fasim, A., More, V. S., & More, S. S. (2021). Large-scale production of enzymes for biotechnology uses. Current Opinion in Biotechnology, 69, 68-76. doi: 10.1016/j.copbio.2020.12.002
  • Fernández, L., Méndez, J., & Guijarro, J. A. (2007). Molecular virulence mechanisms of the fish pathogen Yersinia ruckeri. Veterinary microbiology, 125, 1-10. doi: 10.1016/j.vetmic.2007.06.013
  • German, D. P., & Bittong, R. A. (2009). Digestive enzyme activities and gastrointestinal fermentation in wood-eating catfishes. Journal of Comparative Physiology B, 179, 1025-42. doi: 10.1007/s00360-009-0383-z
  • Gibello, A., Blanco, M. M., Moreno, M. A., Cutuli, M. T., Domenech, A., Domínguez, L., & Fernández-Garayzábal, J. F. (1999). Development of a PCR assay for detection of Yersinia ruckeri in tissues of inoculated and naturally infected trout. Applied and Environmental Microbiology, 65, 346-50. doi: 10.1128/AEM.65.1.346-350.1999
  • Gonzalez, S. F., Osorio, C. R., & Santos, Y. (2003). Development of a PCR-based method for the detection of Listonella anguillarum in fish tissues and blood samples. Diseases of Aquatic Organisms, 55, 109-15. doi:10.3354/dao055109
  • Hankin, L., & Anagnostakis, S. L. (1975). The use of solid media for detection of enzyme production by fungi. Mycologia, 67, 597-607. doi: 10.2307/3758395
  • Hossain, T. J., Chowdhury, S. I., Mozumder, H. A., Chowdhury, M. N., Ali, F., Rahman, N., & Dey, S. (2020). Hydrolytic Exoenzymes Produced by Bacteria Isolated and Identified from the Gastrointestinal Tract of Bombay Duck. Frontiers in Microbiology, 11, 2097. doi: 10.3389/fmicb.2020.0209
  • Ina-Salwany, M. Y., Al-Saari, N., Mohamad, A., Mursidi, F. A., Mohd-Aris, A., Amal, M. N. A., Kasai, H., Mino, S., Sawabe, T., & Zamri-Saad, M. (2019). Vibriosis in fish: A review on disease development and prevention. Journal of Aquatic Animal Health, 31, 3-22. doi: 10.1002/aah.10045
  • Jalgaonwala, R. E., & Mahajan, R. T. (2011). Evaluation of hydrolytic enzyme activities of endophytes from some indigenous medicinal plants. Journal of Agricultural Technology, 7, 1733–1741.
  • Kar, N., & Ghosh, K. (2008). Enzyme producing bacteria in the gastrointestinal tracts of Labeo rohita (Hamilton) and Channa punctatus (Bloch). Turkish Journal of Fisheries and Aquatic Sciences, 8, 115-120.
  • Khan, L. A., Shahzad, R., Al-Harrasi, A., & Lee, J. I. (2017). Endophytic microbes: A resource for producing extracellular enzymes. In D. K. Maheshwari, & K. Annapurna (Eds.), Endophytes: Crop Productivity and Protection (pp. 95-110). Springer, Cham. doi: 10.1007/978-3-319-66544-3_5
  • Kobayashi, T., Koike, K., Yoshimatsu, T., Higaki, N., Suzumatsu, A., Ozawa, T., Hatada, Y., & Ito, S. (1999). Purification and properties of a low-molecular-weight, high-alkaline pectate lyase from an alkaliphilic strain of Bacillus. Bioscience, Biotechnology and Biochemistry, 63, 65–72. doi: 10.1271/bbb.63.65
  • Koca, S. B., Yigit, N. Ö., Didinen, B. I., Metin, S., Bayrak, H., Onuk, E. E., & Diler, İ. (2015). Effects of enzyme-producing probiotic bacteria isolated from the gastrointestinal tract of trout on the growth performance, survival and digestive enzyme activity of rainbow trout fry (Oncorhynchus mykiss). The Israeli Journal of Aquaculture-Bamidgeh, 67, 2015. doi: 10.46989/001c.20695
  • Lemos, M. L., & Balado, M. (2020). Iron uptake mechanisms as key virulence factors in bacterial fish pathogens. Journal of Applied Microbiology, 129, 104-115. doi: 10.1111/jam.14595
  • Lewis, K., Epstein, S., D'Onofrio, A., & Ling, L. L. (2010). Uncultured microorganisms as a source of secondary metabolites. The Journal of Antibiotics, 63, 468-76. doi: 10.1038/ja.2010.87
  • Louden, B. C., Haarmann, D., & Lynne, A. M. (2011). Use of Blue Agar CAS Assay for Siderophore Detection. Journal of Microbiology & Biology Education, 12, 51-3. doi: 10.1128/jmbe.v12i1.249
  • Malathi, S., Priya, D. M., & Palani, P. (2014). Optimization of Protease Enzyme Production by the Halo-Tolerant Vibrio alginolyticus Isolated from Marine Sources. In: R. Kharwar, R. Upadhyay, N. Dubey, & R. Raghuwanshi (Eds.), Microbial Diversity and Biotechnology in Food Security. Springer, New Delhi. doi: 10.1007/978-81-322-1801-2_40
  • Mountfort, D. O., Grant, W. D., Morgan, H., Rainey, F. A., & Stackebrandt, E. (1993). Isolation and characterization of an obligately anaerobic, pectinolytic member of the genus Eubacterium from mullet gut. Archives of Microbiology, 159, 289–295. doi: 10.1007/BF00248486
  • Nath, D., & Rao, M. (2001). pH dependent conformational and structural changes of xylanase from an alkalophilic thermophilic Bacillus sp (NCIM 59). Enzyme and Microbial Technology, 28, 397–403. doi: 10.1016/S0141-0229(00)00359-8
  • O'Brien, S., Hodgson, D. J., & Buckling, A. (2014). Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proceedings of the Royal Society B: Biological Sciences, 281, 20140858. doi: 10.1098/rspb.2014.0858
  • Önalan, Ş. (2019). Expression differences of stress and immunity genes in rainbow trout (Oncorhynchus mykiss, Walbaum 1792) with different bacterial fish diseases. The Israeli Journal of Aquaculture-Bamidgeh, 71, 1-15. doi:10.46989/001c.20978
  • Önalan, Ş., & Çevik, M. (2020). Investigation of the effects of some phytochemicals on Yersinia ruckeri and antimicrobial resistance. Brazilian Journal of Biology, 80, 934-942. doi: 10.1590/1519-6984.234969
  • Ray, A. K., Ghosh, K., & Ringø, E. J. A. N. (2012). Enzyme‐producing bacteria isolated from fish gut: A review. Aquaculture Nutrition, 18, 465-492. doi: 10.1111/j.1365-2095.2012.00943.x
  • Romalde, J. L., Conchas, R. F., & Toranzo, A. E. (1991). Evidence that Yersinia ruckeri possesses a high affinity iron uptake system. FEMS Microbiol Letters, 64, 121–125. doi: 10.1016/0378-1097(91)90581-t.
  • Sarwar, S., Khaliq, A., Yousra, M., & Sultan, T. (2022). Iron biofortification potential of siderophore producing rhizobacterial strains for improving growth, yield and iron contents of groundnut. Journal of Plant Nutrition, 45, 2332-2347. doi: 10.1080/01904167.2022.2063733
  • Sasmal, M., & Ray, R. R. (2015). Production of extracellular enzymes by the gut and gill microflora of Tilapia fish (Oreochromis niloticus). Asian Journal of Multidisciplanary Studies, 3, 44–49. doi: 10.5376/ija.2017.07.0023
  • Schmidtke, L. M., & Carson, J. (2003). Antigen recognition by rainbow trout (Oncorhynchus mykiss) of whole cell proteins expressed by Lactococcus garvieae when obtained directly from fish and under iron limited culture conditions. Veterinary Microbiology, 93, 63-71. doi: 10.1016/s0378-1135(02)00440-6
  • Sheldon, J. R., Laakso, H. A., & Heinrichs, D. E. (2016). Iron acquisition strategies of bacterial pathogens. Microbiology Spectrum, 4, 4-2. doi: 10.1128/microbiolspec.VMBF-0010-2015
  • Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6, 174. doi: 10.1007/s13205-016-0485-8
  • Soares, E. V. (2022). Perspective on the biotechnological production of bacterial siderophores and their use. Applied Microbiology and Biotechnology, 106, 3985-4004. doi: 10.1007/s00253-022-11995-y
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

Bilgin Taşkın 0000-0002-9772-7438

Şükrü Önalan 0000-0003-0058-5232

Publication Date December 25, 2022
Submission Date March 4, 2022
Published in Issue Year 2022

Cite

APA Taşkın, B., & Önalan, Ş. (2022). Gökkuşağı Alabalıklarından (Oncorhynchus mykiss) İzole Edilen Patojen Bakteri İzolatlarının Hidrolitik Enzim Aktiviteleri ve Siderofor Üretim Yetenekleri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(3), 512-520. https://doi.org/10.53433/yyufbed.1082784