Research Article
BibTex RIS Cite

Uçak Kanadı Tasarımı, Analizi ve Yapı Elemanlarının Topoloji Optimizasyonu

Year 2023, , 1091 - 1106, 29.12.2023
https://doi.org/10.53433/yyufbed.1250545

Abstract

Havacılık ve uzay endüstrisinde yapısal bir parçanın üretiminde tasarım, yük, analiz süreçlerinin eş zamanlı olarak yürütülmesi gerekmektedir. Konsept tasarım sürecinde en önemli unsur parçanın en hafif şekilde görevini yerine getirebilmesidir. Bu çalışmada uçak kanat tasarımı Catia yazılımı kullanılarak yapılmıştır, alüminyum 7050 ve HexplyAS4/8552 kompozit malzemeleri için analizler gerçekleştirilmiştir. Sonlu Elemanlar Yöntemi yaklaşımı kullanılarak Hypermesh yazılımı yardımıyla Topoloji Optimizasyonu gerçekleştirilmiştir; birçok iterasyon uygulanarak tasarımda hafifletme çalışmaları için geometrik değişikliklere karar verilmiştir. Optimizasyon sonucunda ortaya çıkan kanat geometrisi yapısal olarak analiz edilip mukavemet kontrolü yapılmıştır. Geometrinin bütünlüğünü sağlayan bağlantı elemanlarının statik hesaplamaları da gerçekleştirilmiştir. İncelenen malzemeler için müsaade edilebilir tasarım değerlerine uygun sonuçlar elde edilmiştir. HexplyAS4/8552 kompozit malzeme hafiflik açısından ön plana çıksa da kullanılabilirlik ve üretime uygunluk açısından alüminyum 7050 malzemesi seçilmiştir.

References

  • Abbas, Y., Elsonni, T., Abdulmajid, A.A., Khalafallh, A., & Alnazır, M. (2021). Structural analysis of a transport aircraft wing. Incas Bulletin, 13(1), 3-9. doi:10.13111/2066-8201.2021.13.1.1
  • Aftab, S. G., Sirajuddin, Sreedhara, B., Ganesh, E., Babu, N. R., & Aithal, S. K. (2022). Finite element analysis of a passenger aircraft landing gear for structural and fatigue safety. Materials Today: Proceedings, 54 (2), 152-158. doi:10.1016/j.matpr.2021.08.199
  • Beer, F. P., Johnston, E. R., DeWolf, J. T., & Mazurek, D. F. (2012). Mechanics of Materials. NY, USA: MacGraw Hill.
  • Bruhn, E. (1973). Analysis and Design of Flight Vehicles Structures. Tri-State Offset Company.
  • Budynas, R., & Nisbett, J. (2008). Shigley's Mechanical Engineering Design. NY, USA: MacGraw Hill.
  • Crews, J. H., & Naik, R. A. (1987). Bearing-Bypass Loading on Bolted Composite Joints. NASA Technical Memorandum 89153, NASA-TM-89.
  • FAA Part 23. (2023). PART 23 – Airworthiness Standards: Normal, Utilitiy, Acrobatic and Commuter Category Airplanes. Federal Aviation Administration.
  • Kassapoglou, C. (2010). Design and Analysis of Composite Structures With Applications to Aerospace Structures. John Wiley & Sons. doi:10.1002/9781118536933
  • Kaw, A. (2005). Mechanics of Composite Materials. CRC Press.
  • Liu, H., Zhou, D., Shen, B., & Ding, Y. (2021). Lightweight design of solar uav wing structures based on sandwich equivalent theory. International Journal of Aerospace Engineering, 2021, 1-12. doi:10.1155/2021/6752410
  • Madier, D. (2021). Practical Finite Element Analysis for Mechanical Engineers. FEA Academy.
  • Niu, M. C. (1989). Airframe Structural Design. Conmilit Press Ltd.
  • Niu, M. C. (1999). Airframe Stress Analysis And Sizing. Conmilit Press Ltd.
  • Rozvany, G. I., Zhou, M., & Birker, T. (1992). Generalized shape optimization without homogenization. Structural optimization, 4(3), 250-252. doi:10.1007/BF01742754
  • Sadraey, M. (2012). Aircraft Design: A System Engineering Approach. John Wiley & Sons, Ltd.
  • Zhou, M., & Rozvany, G. I. (1991). The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 89(1-3), 309-336. doi:10.1016/0045-7825(91)90046-9

Airplane Wing Design, Analysis and Topology Optimization of Structural Elements

Year 2023, , 1091 - 1106, 29.12.2023
https://doi.org/10.53433/yyufbed.1250545

Abstract

The design and analysis processes should be carried out simultaneously in the production of a structural part in the aerospace industry. The most important factor in the concept design process is that the part can fulfill its task in the lightest way. In this study, aircraft wing design was made using Catia software, analyzes were performed for aluminum 7050 and HexplyAS4/8552 composite materials. Using the Finite Element Method approach, Topology Optimization was performed with the help of Hypermesh software; By applying many iterations, geometric changes were decided for mitigation studies in the design. The wing geometry that emerged as a result of the optimization was analyzed structurally and strength was checked, and static calculations of the fasteners that ensure the integrity of the geometry were also carried out. The results were obtained in accordance with the permissible design values for the investigated materials. Although the HexplyAS4/8552 composite material stands out in terms of lightness, Aluminum 7050 material was chosen in terms of usability and suitability for production.

References

  • Abbas, Y., Elsonni, T., Abdulmajid, A.A., Khalafallh, A., & Alnazır, M. (2021). Structural analysis of a transport aircraft wing. Incas Bulletin, 13(1), 3-9. doi:10.13111/2066-8201.2021.13.1.1
  • Aftab, S. G., Sirajuddin, Sreedhara, B., Ganesh, E., Babu, N. R., & Aithal, S. K. (2022). Finite element analysis of a passenger aircraft landing gear for structural and fatigue safety. Materials Today: Proceedings, 54 (2), 152-158. doi:10.1016/j.matpr.2021.08.199
  • Beer, F. P., Johnston, E. R., DeWolf, J. T., & Mazurek, D. F. (2012). Mechanics of Materials. NY, USA: MacGraw Hill.
  • Bruhn, E. (1973). Analysis and Design of Flight Vehicles Structures. Tri-State Offset Company.
  • Budynas, R., & Nisbett, J. (2008). Shigley's Mechanical Engineering Design. NY, USA: MacGraw Hill.
  • Crews, J. H., & Naik, R. A. (1987). Bearing-Bypass Loading on Bolted Composite Joints. NASA Technical Memorandum 89153, NASA-TM-89.
  • FAA Part 23. (2023). PART 23 – Airworthiness Standards: Normal, Utilitiy, Acrobatic and Commuter Category Airplanes. Federal Aviation Administration.
  • Kassapoglou, C. (2010). Design and Analysis of Composite Structures With Applications to Aerospace Structures. John Wiley & Sons. doi:10.1002/9781118536933
  • Kaw, A. (2005). Mechanics of Composite Materials. CRC Press.
  • Liu, H., Zhou, D., Shen, B., & Ding, Y. (2021). Lightweight design of solar uav wing structures based on sandwich equivalent theory. International Journal of Aerospace Engineering, 2021, 1-12. doi:10.1155/2021/6752410
  • Madier, D. (2021). Practical Finite Element Analysis for Mechanical Engineers. FEA Academy.
  • Niu, M. C. (1989). Airframe Structural Design. Conmilit Press Ltd.
  • Niu, M. C. (1999). Airframe Stress Analysis And Sizing. Conmilit Press Ltd.
  • Rozvany, G. I., Zhou, M., & Birker, T. (1992). Generalized shape optimization without homogenization. Structural optimization, 4(3), 250-252. doi:10.1007/BF01742754
  • Sadraey, M. (2012). Aircraft Design: A System Engineering Approach. John Wiley & Sons, Ltd.
  • Zhou, M., & Rozvany, G. I. (1991). The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 89(1-3), 309-336. doi:10.1016/0045-7825(91)90046-9
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

Hasan Korkut 0000-0002-5659-2629

Meryem Altay 0000-0001-6930-6292

Hakan Aydın 0000-0001-7364-6281

Publication Date December 29, 2023
Submission Date February 15, 2023
Published in Issue Year 2023

Cite

APA Korkut, H., Altay, M., & Aydın, H. (2023). Uçak Kanadı Tasarımı, Analizi ve Yapı Elemanlarının Topoloji Optimizasyonu. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 1091-1106. https://doi.org/10.53433/yyufbed.1250545