Research Article
BibTex RIS Cite

Setting Time, Compressive Strength, and Photon Attenuation Properties of Cement Mortars Produced with Nano-SiO2

Year 2023, , 1029 - 1042, 29.12.2023
https://doi.org/10.53433/yyufbed.1329695

Abstract

In this study, initial and final setting time, compressive strength, and photon attenuation properties of cement mortar samples produced with 0.5%, 1%, 2%, and 4% nano-scale SiO2 addition were investigated. For this purpose, cement mortar samples were prepared and cured for 1, 2, 7, 28, and 90 days. Increases in compressive strength values were observed in the early curing ages, with a slight decrease of 3.17% and 0.33% for low nano-SiO2 rates (0.5% and 1%) in later ages. In addition, these results were evaluated with Scanning Electron Microscope (SEM) images. In the samples added 4% nano-SiO2, there was a 13.3% and 9.09% reduction in the initial and final setting times, respectively. Furthermore, mass attenuation coefficients were compared for different cure ages. It was aimed to determine the effect of the curing time on the photon attenuation property by adding nano-SiO2 to the concrete.

References

  • Beigi, M. H., Berenjian, J., Omran, O. L., Nik, A. S., & Nikbin, I. M. (2013). An experimental survey on combined effects of fibers and nano-silica on the mechanical, rheological, and durability properties of self-compacting concrete. Materials & Design, 50, 1019-1029. doi:10.1016/j.matdes.2013.03.046
  • Behfarnia, K., & Rostami, M. (2017). Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete. Construction and Building Materials, 131, 205-213. doi:10.1016/j.conbuildmat.2016.11.070
  • Behfarnia, K., & Salemi, N. (2013). The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Construction and Building Materials, 48, 580-584. doi:10.1016/j.conbuildmat.2013.07.088
  • El-Gamal, S. M. A., Hashem, F. S., & Amin, M. S. (2017). Influence of carbon nanotubes, nanosilica and nanometakaolin on some morphological-mechanical properties of oil well cement pastes subjected to elevated water curing temperature and regular room air curing temperature. Construction and Building Materials, 146, 531-546. doi:10.1016/j.conbuildmat.2017.04.124
  • Elsharkawy, E. R., & Sadawy, M. M. (2016). Effect of gamma ray energies and addition of nano-SiO2 to cement on mechanical properties and mass attenuation coefficient. IOSR Journal of Mechanical and Civil Engineering, 13(6), 17-22.
  • Fallah, S., & Nematzadeh, M. (2017). Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Construction and Building Materials, 132, 170-187. doi:10.1016/j.conbuildmat.2016.11.100
  • Gagg, C. R. (2014). Cement and concrete as an engineering material: An historic appraisal and case study analysis. Engineering Failure Analysis, 40, 114-140. doi:10.1016/j.engfailanal.2014.02.004
  • Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2010). Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete. Composites Part B: Engineering, 41(8), 673-677. doi:10.1016/j.compositesb.2010.08.003
  • Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2011). Investigations on the development of the permeability properties of binary blended concrete with nano-SiO2 particles. Journal of Composite Materials, 45(19), 1931-1938. doi:10.1177/0021998310389091
  • Hassanzadeh, M., & Sadat Kiai, S. M. (2018). Calculation of photon attenuation coefficient and dose rate in concrete with the addition of SiO2 and MnFe2O4 nanoparticles using MCNPX code and comparison with experimental results. Nuclear Science and Techniques, 29, 1-7. doi:10.1007/s41365-018-0493-y
  • He, Z., Zhu, X., Wang, J., Mu, M., & Wang, Y. (2019). Comparison of CO2 emissions from OPC and recycled cement production. Construction and Building Materials, 211, 965-973.
  • Hou, P., Qian, J., Cheng, X., & Shah, S. P. (2015). Effects of the pozzolanic reactivity of nano-SiO2 on cement-based materials. Cement and Concrete Composites, 55, 250-258. doi:10.1016/j.cemconcomp.2014.09.014
  • Janković, K., Stanković, S., Bojović, D., Stojanović, M., & Antić, L. (2016). The influence of nano-silica and barite aggregate on properties of ultra high performance concrete. Construction and Building Materials, 126, 147-156. doi:10.1016/j.conbuildmat.2016.09.026
  • Ltifi, M., Guefrech, A., Mounanga, P., & Khelidj, A. (2011). Experimental study of the effect of addition of nano-silica on the behaviour of cement mortars. Procedia Engineering, 10, 900-905. doi:10.1016/j.proeng.2011.04.148
  • Nik, A. S., & Omran, O. L. (2013). Estimation of compressive strength of self-compacted concrete with fibers consisting nano-SiO2 using ultrasonic pulse velocity. Construction and Building Materials, 44, 654-662. doi:10.1016/j.conbuildmat.2013.03.082
  • Norhasri, M. M., Hamidah, M. S., & Fadzil, A. M. (2017). Applications of using nano material in concrete: A review. Construction and Building Materials, 133, 91-97. doi:10.1016/j.conbuildmat.2016.12.005
  • Qing, Y., Zenan, Z., Deyu, K., & Rongshen, C. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction and Building Materials, 21(3), 539-545. doi:10.1016/j.conbuildmat.2005.09.001
  • Sanchez, F., & Sobolev, K. (2010). Nanotechnology in concrete-A review. Construction and Building Materials, 24(11), 2060-2071. doi:10.1016/j.conbuildmat.2010.03.014
  • Shih, J. Y., Chang, T. P., & Hsiao, T. C. (2006). Effect of nanosilica on characterization of Portland cement composite. Materials Science and Engineering: A, 424(1-2), 266-274. doi:10.1016/j.msea.2006.03.010
  • Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., & Ahalawat, S. (2013). Beneficial role of nanosilica in cement based materials–A review. Construction and Building Materials, 47, 1069-1077. doi:10.1016/j.conbuildmat.2013.05.052
  • TSE. (2012). (TS EN 197-1) Turkish Standard: Cement - Part 1: Composition, specifications and conformity criteria for common cements.
  • Wu, Z., Khayat, K. H., & Shi, C. (2017). Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete. Cement and Concrete Research, 95, 247-256. doi:10.1016/j.cemconres.2017.02.031
  • Zhang, P., Wan, J., Wang, K., & Li, Q. (2017). Influence of nano-SiO2 on properties of fresh and hardened high performance concrete: A state-of-the-art review. Construction and Building Materials, 148, 648-658. doi:10.1016/j.conbuildmat.2017.05.059
  • Zaghloul, Y. R., & Elwan, S. K. (2017). Characterization of nano-silica concrete for nuclear uses. International Journal of Current Engineering and Technology, 7(1), 207-212.

Nano-SiO2 ile Üretilen Çimento Harçlarının Priz Süresi Basınç Dayanımı ve Foton Zayıflatma Özellikleri

Year 2023, , 1029 - 1042, 29.12.2023
https://doi.org/10.53433/yyufbed.1329695

Abstract

Bu çalışmada, %0.5, %1, %2 ve %4 nano boyutlu SiO2 ilavesi ile üretilen çimento harcı numunelerinin priz başlangıç ve bitiş süreleri, basınç dayanımları ve foton zayıflatma katsayıları incelenmiştir. Bu amaçla çimento harcı numuneleri hazırlanmış ve 1, 2, 7, 28 ve 90 gün kür edilmiştir. Erken kürleme yaşlarında basınç dayanımı değerlerinde artışlar gözlenirken, ileri yaşlarda ve düşük nano-SiO2 eklemelerinde (%0.5 ve %1) basınç dayanımları %3.17 ve %0.33 oranında azalmıştır. Ayrıca bu sonuçlar Taramalı Elektron Mikroskobu (SEM) görüntüleri ile değerlendirilmiştir. %4 nano-SiO2 ilave edilen numunelerde priz başlangıç süresinde %13.3, priz bitiş süresinde ise %9.09 oranında azalma olmuştur. Ayrıca farklı kürlenme yaşları için kütle zayıflatma katsayıları karşılaştırılmıştır. Çalışmada kür süresinin, betona Nano SiO2 eklenmesi ile foton zayıflatma özelliğine yapacağı etkinin belirlenmesi hedeflenmiştir.

References

  • Beigi, M. H., Berenjian, J., Omran, O. L., Nik, A. S., & Nikbin, I. M. (2013). An experimental survey on combined effects of fibers and nano-silica on the mechanical, rheological, and durability properties of self-compacting concrete. Materials & Design, 50, 1019-1029. doi:10.1016/j.matdes.2013.03.046
  • Behfarnia, K., & Rostami, M. (2017). Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete. Construction and Building Materials, 131, 205-213. doi:10.1016/j.conbuildmat.2016.11.070
  • Behfarnia, K., & Salemi, N. (2013). The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Construction and Building Materials, 48, 580-584. doi:10.1016/j.conbuildmat.2013.07.088
  • El-Gamal, S. M. A., Hashem, F. S., & Amin, M. S. (2017). Influence of carbon nanotubes, nanosilica and nanometakaolin on some morphological-mechanical properties of oil well cement pastes subjected to elevated water curing temperature and regular room air curing temperature. Construction and Building Materials, 146, 531-546. doi:10.1016/j.conbuildmat.2017.04.124
  • Elsharkawy, E. R., & Sadawy, M. M. (2016). Effect of gamma ray energies and addition of nano-SiO2 to cement on mechanical properties and mass attenuation coefficient. IOSR Journal of Mechanical and Civil Engineering, 13(6), 17-22.
  • Fallah, S., & Nematzadeh, M. (2017). Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Construction and Building Materials, 132, 170-187. doi:10.1016/j.conbuildmat.2016.11.100
  • Gagg, C. R. (2014). Cement and concrete as an engineering material: An historic appraisal and case study analysis. Engineering Failure Analysis, 40, 114-140. doi:10.1016/j.engfailanal.2014.02.004
  • Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2010). Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete. Composites Part B: Engineering, 41(8), 673-677. doi:10.1016/j.compositesb.2010.08.003
  • Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2011). Investigations on the development of the permeability properties of binary blended concrete with nano-SiO2 particles. Journal of Composite Materials, 45(19), 1931-1938. doi:10.1177/0021998310389091
  • Hassanzadeh, M., & Sadat Kiai, S. M. (2018). Calculation of photon attenuation coefficient and dose rate in concrete with the addition of SiO2 and MnFe2O4 nanoparticles using MCNPX code and comparison with experimental results. Nuclear Science and Techniques, 29, 1-7. doi:10.1007/s41365-018-0493-y
  • He, Z., Zhu, X., Wang, J., Mu, M., & Wang, Y. (2019). Comparison of CO2 emissions from OPC and recycled cement production. Construction and Building Materials, 211, 965-973.
  • Hou, P., Qian, J., Cheng, X., & Shah, S. P. (2015). Effects of the pozzolanic reactivity of nano-SiO2 on cement-based materials. Cement and Concrete Composites, 55, 250-258. doi:10.1016/j.cemconcomp.2014.09.014
  • Janković, K., Stanković, S., Bojović, D., Stojanović, M., & Antić, L. (2016). The influence of nano-silica and barite aggregate on properties of ultra high performance concrete. Construction and Building Materials, 126, 147-156. doi:10.1016/j.conbuildmat.2016.09.026
  • Ltifi, M., Guefrech, A., Mounanga, P., & Khelidj, A. (2011). Experimental study of the effect of addition of nano-silica on the behaviour of cement mortars. Procedia Engineering, 10, 900-905. doi:10.1016/j.proeng.2011.04.148
  • Nik, A. S., & Omran, O. L. (2013). Estimation of compressive strength of self-compacted concrete with fibers consisting nano-SiO2 using ultrasonic pulse velocity. Construction and Building Materials, 44, 654-662. doi:10.1016/j.conbuildmat.2013.03.082
  • Norhasri, M. M., Hamidah, M. S., & Fadzil, A. M. (2017). Applications of using nano material in concrete: A review. Construction and Building Materials, 133, 91-97. doi:10.1016/j.conbuildmat.2016.12.005
  • Qing, Y., Zenan, Z., Deyu, K., & Rongshen, C. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction and Building Materials, 21(3), 539-545. doi:10.1016/j.conbuildmat.2005.09.001
  • Sanchez, F., & Sobolev, K. (2010). Nanotechnology in concrete-A review. Construction and Building Materials, 24(11), 2060-2071. doi:10.1016/j.conbuildmat.2010.03.014
  • Shih, J. Y., Chang, T. P., & Hsiao, T. C. (2006). Effect of nanosilica on characterization of Portland cement composite. Materials Science and Engineering: A, 424(1-2), 266-274. doi:10.1016/j.msea.2006.03.010
  • Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., & Ahalawat, S. (2013). Beneficial role of nanosilica in cement based materials–A review. Construction and Building Materials, 47, 1069-1077. doi:10.1016/j.conbuildmat.2013.05.052
  • TSE. (2012). (TS EN 197-1) Turkish Standard: Cement - Part 1: Composition, specifications and conformity criteria for common cements.
  • Wu, Z., Khayat, K. H., & Shi, C. (2017). Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete. Cement and Concrete Research, 95, 247-256. doi:10.1016/j.cemconres.2017.02.031
  • Zhang, P., Wan, J., Wang, K., & Li, Q. (2017). Influence of nano-SiO2 on properties of fresh and hardened high performance concrete: A state-of-the-art review. Construction and Building Materials, 148, 648-658. doi:10.1016/j.conbuildmat.2017.05.059
  • Zaghloul, Y. R., & Elwan, S. K. (2017). Characterization of nano-silica concrete for nuclear uses. International Journal of Current Engineering and Technology, 7(1), 207-212.
There are 24 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

Namık Yaltay 0000-0002-0484-1275

Publication Date December 29, 2023
Submission Date July 31, 2023
Published in Issue Year 2023

Cite

APA Yaltay, N. (2023). Setting Time, Compressive Strength, and Photon Attenuation Properties of Cement Mortars Produced with Nano-SiO2. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 1029-1042. https://doi.org/10.53433/yyufbed.1329695