Physicochemical and Mechanical Properties of Sodium Alginate Films Containing Thyme Essential Oil
Year 2024,
, 589 - 600, 31.08.2024
Cansu Torol
,
Özgül Özdestan Ocak
Abstract
In this study, it was aimed to develop edible film by the casting technique from sodium alginate (SA) (%2 w/v) using three different concentrations of thyme essential oil (TEO) (0.5%, 1%, 1.5% v/v). The physicochemical, mechanical, structural, and antioxidant properties of enriched SA films were also characterized. The highest film solubility (FS) was found as 91.78% in SA (control) films. The mechanical properties of films were found between 27.14 MPa and 50.06 MPa for tensile strength (TS) and between 13.88% and 32.02% for elongation at break (EAB). The highest total phenolic content (TPC) and antioxidant activity were found as 382.19 mg GAE/kg and 16.20% in SA film incorporated with TEO 1.5% respectively. As the concentration of TEO increased, the L* value increased, leading the film colors to approach white. Additionally, it was observed that as the b* value increased the film colors tented towards yellow. When the results of SEM analysis were evaluated, it was found that SA films were more homogeneous than other films. In general, it was concluded that TEO at a concentration of %1 (v/v) improves the physical and chemical properties of sodium alginate film compared to other groups.
Supporting Institution
Ege University Scientific Research Projects Coordination Unit
Project Number
FYL 2020 22112
Thanks
This work was supported by Ege University Scientific Research Projects Coordination Unit (Project number FYL 2020 22112).
References
- Abdel Aziz, M. S., Salama, H. E., & Sabaa, M. W. (2018). Biobased alginate/castor oil edible films for active food packaging, LWT- Food Science and Technology, 96, 455-460. https://doi.org/10.1016/j.lwt.2018.05.049
- Acosta, S., Jiménez, A., Cháfer, M., González-Martínez, C., & Chiralt, A. (2015). Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49, 135-143. https://doi.org/10.1016/j.foodhyd.2015.03.015
- Aguirre-Joya, J. A., De Leon-Zapata, M. A., Alvarez-Perez, O. B., Torres-León, C., Nieto-Oropeza, D. E., Ventura-Sobrevilla, J. M., ... & Aguilar, C. N. (2018). Basic and applied concepts of edible packaging for foods. In: A. M. Grumezescu, & A. M. Holban (Eds.), Food packaging and preservation handbook of food bioengineering, Vol 9, (pp 1-46). Academic Press. https://doi.org/10.1016/B978-0-12-811516-9.00001-4
- Ahmad, M., Benjakul, S., Prodpran, T., & Agustini, T. W. (2012). Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocolloids, 28(1), 189-199. https://doi.org/10.1016/j.foodhyd.2011.12.003
- Anonymous. (2021). Food and drug administration title 21, part 184 sec. 184.1724 sodium alginate. FDA, U.S. Access date: 23 July 2021. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=184.1724
- ASTM. (2001). Standard D882 annual book of american standard testing methods; Standard test method for tensile properties of thin plastic sheeting. Philadelphia, PA, USA, 162-170 pp.
- Benavides, S., Villalobos-Carvajal, R., & Reyes, J. E. (2012). Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. Journal of Food Engineering, 110(2), 232-239. https://doi.org/10.1016/j.jfoodeng.2011.05.023
- Bhagath, Y. B., & Manjula, K. (2019). Influence of composite edible coating systems on preservation of fresh meat cuts and products: a brief review on their trends and applications. International Food Research Journal, 26(2), 377-392.
- Boulekbache-Makhlouf, L., Slimani, S., & Madani, K. (2013). Total phenolic content, antioxidant and antibacterial activities of fruits of Eucalyptus globulus cultivated in Algeria. Industrial Crops and Products, 41, 85-89. https://doi.org/10.1016/j.indcrop.2012.04.019
- Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
- Chen, J., Wu, A., Yang, M., Ge, Y., Pristijono, P., Li, J., … & Mi, H. (2021). Characterization of sodium alginate-based films incorporated with thymol for fresh- cut apple packaging. Food Control, 126, 108063. https://doi.org/10.1016/j.foodcont.2021.108063
- Dashipour, A., Razavilar, V., Hosseini, H., Shojaee-Aliabadi, S., German, J. B., Ghanati, K., … & Khaksar, R. (2015). Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. International Journal of Biological Macromolecules, 72, 606-613. https://doi.org/10.1016/j.ijbiomac.2014.09.006
- Dehghani, S., Hosseini, S. V., & Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505-513. https://doi.org/10.1016/j.foodchem.2017.07.034
- Emiroğlu, Z. K., Yemis, G. P., Coskun B. K., & Candogan, K. (2010). Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Science, 86(2), 283-288. https://doi.org/10.1016/j.meatsci.2010.04.016
- Gaowa, S., Feng, K., Yuanzheng, L., Long, Y., & Wenzhong, H. (2023). Effect of alginate-based edible coating containing thyme essential oil on quality and microbial safety of fresh-cut potatoes. Horticulturae, 9(5), 543. https://doi.org/10.3390/horticulturae9050543
- Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers, 84(1), 477-483. https://doi.org/10.1016/j.carbpol.2010.12.010
- Gokbulut, I., & Ozturk, F. S. (2018). Use of alginate in food microencapsulation. Batman University Journal of Life Sciences, 8(1/2), 16-28.
- Gutiérrez, T. J., Tapia, M. S., Perez, E., Famα´, L. (2015) Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocolloids. 45, 211-217. https://doi.org/10.1016/j.foodhyd.2014.11.017
- Hammoudi, N., Cherif, H. Z., Borsali, F., Benmansour, K., & Meghezzi, A. (2019). Preparation of active antimicrobial and antifungal alginatemontmorillonite/ lemon essential oil nanocomposite films. Materials Technology, 35(7), 383-394. https://doi.org/10.1080/10667857.2019.1685292
- Hosseini, M. H., Razavi, S. H., & Mousavı, M. A. (2009). Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils. Journal of Food Processing and Preservation, 33(6), 727-743. https://doi.org/10.1111/j.1745-4549.2008.00307.x
- Hu, X., Yuan, L., Han, L., Li, S., & Zhou, W. (2020). The preparation, characterization, anti-ultraviolet and antimicrobial activity of gelatin film incorporated with berberine-HP-β-CD. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124273. https://doi.org/10.1016/j.colsurfa.2019.124273
- Jouki, M., Mortazavi, S. A., Yazdi, F. T., & Koocheki, A. (2014). Characterization of antioxidant antibacterial quince seed mucilage films containing thyme essential oil. Carbohydrate Polymers, 99, 537-546. https://doi.org/10.1016/j.carbpol.2013.08.077
- Kavoosi, G., Dadfar, S. M. M., & Purfard, A. M. (2013). Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. Journal of Food Science, 78(2), E244-E250. https://doi.org/10.1111/1750-3841.12015
- Khodaei, D., Oltrogge, K., & Hamidi-Esfahani, Z. (2020). Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum. LWT Food Science and Technology, 117, 108617. https://doi.org/10.1016/j.lwt.2019.108617
- Kurek, M., Scetar, M., & Galic, K. (2017). Edible coatings minimize fat uptake in deep fat fried products: A review. Food Hydrocolloids, 71, 225-235. https://doi.org/10.1016/j.foodhyd.2017.05.006
- Liu, C., Huang, J., Zheng, X., Liu, S., Lu, K., Tang, K., & Liu, J. (2020). Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packaging and Shelf Life, 24, 100485. https://doi.org/10.1016/j.fpsl.2020.100485
- Mahcene, Z., Khelil, A., Hasni, S., Akman, P. K., Bozkurt, F., Birech, K., … & Tornuk, F. (2019). Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. International Journal of Biological Macromolecules, 145, 124-132. https://doi.org/10.1016/j.ijbiomac.2019.12.093
- Mahcene, Z., Hasni, S., Goudjil, M. B., & Khelil, A. (2021). Food edible coating systems: A review. European Food Science and Engineering, 2(1), 26-33.
- Moey, S. W., Abdullah, A., & Ahmad, I. (2018). Effect of cinnamomum zeylanicum essential oil on the physical and mechanical properties of edible films from kappaphycus alvarezii. Malaysian Applied Biology, 47(5), 197-203.
- Mohamed, S. A. A., El-Sakhawy, M., & El-Sakhawy, M. A.-M. (2020). Polysaccaharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate Polymers, 238, 116178. https://doi.org/10.1016/j.carbpol.2020.116178
- Okcu, Z., Yavuz, Y., & Kerse, S. (2018). Edible film and coating applications in fruits and vegetables. Alinteri Journal of Agricultural Science, 33(2), 221-226. https://doi.org/10.28955/alinterizbd.368362
- Özdestan, Ö., & Üren, A. (2009, Mayıs). Piyasada satılan bazı şalgam suyu örneklerinin renk değerlerinin (L*, a*, b*) belirkenmesi. II. Geleneksel Gıdalar Sempozyumu, Van.
- Pavlath, A. E., & Orts, W. (2009). Edible films and coatings: why, what, and how? In K. C. Huber & M. E. Embuscado (Eds.), Edible films and coatings for food applications (pp 1-23). Springer, New York, NY. https://doi.org/10.1007/978-0-387-92824-1_1
- Peng, Y., & Li, Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloids, 36, 287-293. https://doi.org/10.1016/j.foodhyd.2013.10.013
- Pereda, M., Dufresne, A., Aranguren, M. I., & Marcovich, N. E. (2014). Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydrate Polymers, 101, 1018-1026. https://doi.org/10.1016/j.carbpol.2013.10.046
- Peretto, G., Du, W.-X., Avena-Bustillos, J., De J., Berrios, R. J., Sambo, P., & McHugh, T. H. (2014). Optimization of antimicrobial and physical properties of alginate coatings containing carvacrol and methyl cinnamate for strawberry application. Journal of Agricultural and Food Chemistry, 62(4), 984-990. https://doi.org/10.1021/jf4042886
- Pop, O. L., Pop, C. R., Dufrechou, M., Vodnar, D. C., Socaci, S. A., Dulf, F. V., … & Suharoschi, R. (2019). Edible films and coatings functionalization by probiotic incorporation: A Review. Polymers, 12(1), 12. https://doi.org/10.3390/polym12010012
- Sarengaowa, Hu, W., Jiang, A., Xiu, Z., & Feng, K. (2018). Effect of thyme oil-alginate-based coating on quality and microbial safety of fresh-cut apples. Journal of the Science of Food and Agriculture, 98(6), 2302-2311. https://doi.org/10.1002/jsfa.8720
- Sarıcaoglu, F. T., & Turhan, S. (2020). Physicochemical, antioxidant and antimicrobial properties of mechanically deboned chicken meat protein films enriched with various essential oils. Food Packaging and Shelf Life, 25, 100527. https://doi.org/10.1016/j.fpsl.2020.100527
- Senturk Parreidt, T., Müller, K., & Schmid, M. (2018). Alginate-based edible films and coatings for food packaging applications. Foods, 7(10), 170. https://doi.org/10.3390/foods7100170
- Shahbazi, Y. (2017). The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. International Journal of Biological Macromolecules, 99, 746-753. https://doi.org/10.1016/j.ijbiomac.2017.03.065
- Shakerardekani, A., Hashemi, M., Shahedi, M., & Mirzaalian Dastjerdi, A. (2021) Enhancing the quality of fresh pistachio fruit using sodium alginate enriched with thyme essential oil. Journal of Agricultural Science Technology, 23(1), 65-82.
- Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M. A., Mohammadi, A., Ghasemlou, M., Ojagh, S. M., … & Khaksar, R. (2013). Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. International Journal of Biological Macromolecules, 52, 116-124. https://doi.org/10.1016/j.ijbiomac.2012.08.026
- Tabassum, N., & Khan, M. A. (2020). Modified atmosphere packaging of fresh-cut papaya using alginate based edible coating: Quality evaluation and shelf-life study. Scientia Horticulturae, 259, 108853. https://doi.org/10.1016/j.scienta.2019.108853
- Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579. https://doi.org/10.1016/j.foodchem.2012.03.094
- Ulusoy, B. H., Yıldırım, F. K., & Hecer, C. (2018). Edible films and coatings: A good idea from past to future technology. Journal Food Science and Technology, 5(1), 28-33. https://doi.org/10.18488/journal.58.2018.51.28.33
- Umaraw, P., & Verma, A. K. (2015). Comprehensive review on application of edible film on meat products: An eco-friendly approach. Critical Reviews in Food Science and Nutrition, 57(6), 1270-1279. https://doi.org/10.1080/10408398.2014.986563
- Venturini Antunes, G., Sodré, G. M., Radünz, M., Silva da Rosa, R., Rodrigues, A., Arocha Gularte, M., … & Avila Gandra, E. (2023). Bioactive coating of sodium alginate and agar added with essential oils of thyme (thymus vulgaris l.) and sweet orange (citrus aurantium var. dulcis) with antimicrobial properties applied over strawberries. Revista Chilena de Nutrición, 50(3), 281-290. http://dx.doi.org/10.4067/s0717-75182023000300281
- Xu, B. J., & Chang, S. K. C. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science, 72(2), 159-166. https://doi.org/10.1111/j.1750-3841.2006.00260.x
- Yan, Q., Zhang, J., Dong, H., Hou, H., & Guo, P. (2012). Properties and antimicrobial activities of starch-sodium alginate composite films incorporated with sodium dehydroacetate or rosemary extract. Journal of Applied Polymer Science, 127(3), 1951-1958. https://doi.org/10.1002/app.37570
Kekik Esansiyel Yağı İçeren Sodyum Aljinat Filmlerinin Fizikokimyasal ve Mekanik Özellikleri
Year 2024,
, 589 - 600, 31.08.2024
Cansu Torol
,
Özgül Özdestan Ocak
Abstract
Bu çalışmada dökme yöntemikullanılarak üç farklı konsantrasyonda kekik esansiyel yağı (KY) (%0.5, %1, %1.5 h/h) katkılı sodyum aljinat (%2 a/h) (SA) filmlerin yenilebilir film olarak geliştirilmesi amaçlanmıştır. Zenginleştirilmiş sodyum aljinat filmlerin fizikokimyasal, mekaniksel, yapısal ve antioksidan özellikleri karakterize edilmiştir. En yüksek film çözünürlüğü %91.78 olarak SA (kontrol) filmlerde bulunmuştur. Filmlerin kopma mukavemeti 27.14 MPa ve 50.06 MPa arasında, kopma anında uzama değerleri ise 13.88% ve 32.02% arasında bulunmuştur. En yüksek toplam fenolik içerik ve antioksidan aktivite sırasıyla %1.5 KY içeren SA filminde 382.19 mg GAE/kg ve %16.20 olarak bulunmuştur. KY’nin artan konsantrasyonlarına bağlı olarak L* değeri arttı ve film renkleri beyaza yaklaştı. Ayrıca b* değerinin artması ile film renkleri sarıya yaklaştığı görülmüştür.SEM analiz sonuçları değerlendirildiğinde SA filmlerin diğer filmlere göre daha homojen olduğu tespit edilmiştir. Genel olarak %1 (h/h) konsantrasyonunda KY’nin sodyum aljinat filminin fiziksel ve kimyasal özelliklerini diğer gruplara kıyasla daha iyi geliştirdiği sonucuna varılmıştır.
Project Number
FYL 2020 22112
References
- Abdel Aziz, M. S., Salama, H. E., & Sabaa, M. W. (2018). Biobased alginate/castor oil edible films for active food packaging, LWT- Food Science and Technology, 96, 455-460. https://doi.org/10.1016/j.lwt.2018.05.049
- Acosta, S., Jiménez, A., Cháfer, M., González-Martínez, C., & Chiralt, A. (2015). Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49, 135-143. https://doi.org/10.1016/j.foodhyd.2015.03.015
- Aguirre-Joya, J. A., De Leon-Zapata, M. A., Alvarez-Perez, O. B., Torres-León, C., Nieto-Oropeza, D. E., Ventura-Sobrevilla, J. M., ... & Aguilar, C. N. (2018). Basic and applied concepts of edible packaging for foods. In: A. M. Grumezescu, & A. M. Holban (Eds.), Food packaging and preservation handbook of food bioengineering, Vol 9, (pp 1-46). Academic Press. https://doi.org/10.1016/B978-0-12-811516-9.00001-4
- Ahmad, M., Benjakul, S., Prodpran, T., & Agustini, T. W. (2012). Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocolloids, 28(1), 189-199. https://doi.org/10.1016/j.foodhyd.2011.12.003
- Anonymous. (2021). Food and drug administration title 21, part 184 sec. 184.1724 sodium alginate. FDA, U.S. Access date: 23 July 2021. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=184.1724
- ASTM. (2001). Standard D882 annual book of american standard testing methods; Standard test method for tensile properties of thin plastic sheeting. Philadelphia, PA, USA, 162-170 pp.
- Benavides, S., Villalobos-Carvajal, R., & Reyes, J. E. (2012). Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. Journal of Food Engineering, 110(2), 232-239. https://doi.org/10.1016/j.jfoodeng.2011.05.023
- Bhagath, Y. B., & Manjula, K. (2019). Influence of composite edible coating systems on preservation of fresh meat cuts and products: a brief review on their trends and applications. International Food Research Journal, 26(2), 377-392.
- Boulekbache-Makhlouf, L., Slimani, S., & Madani, K. (2013). Total phenolic content, antioxidant and antibacterial activities of fruits of Eucalyptus globulus cultivated in Algeria. Industrial Crops and Products, 41, 85-89. https://doi.org/10.1016/j.indcrop.2012.04.019
- Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
- Chen, J., Wu, A., Yang, M., Ge, Y., Pristijono, P., Li, J., … & Mi, H. (2021). Characterization of sodium alginate-based films incorporated with thymol for fresh- cut apple packaging. Food Control, 126, 108063. https://doi.org/10.1016/j.foodcont.2021.108063
- Dashipour, A., Razavilar, V., Hosseini, H., Shojaee-Aliabadi, S., German, J. B., Ghanati, K., … & Khaksar, R. (2015). Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. International Journal of Biological Macromolecules, 72, 606-613. https://doi.org/10.1016/j.ijbiomac.2014.09.006
- Dehghani, S., Hosseini, S. V., & Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505-513. https://doi.org/10.1016/j.foodchem.2017.07.034
- Emiroğlu, Z. K., Yemis, G. P., Coskun B. K., & Candogan, K. (2010). Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Science, 86(2), 283-288. https://doi.org/10.1016/j.meatsci.2010.04.016
- Gaowa, S., Feng, K., Yuanzheng, L., Long, Y., & Wenzhong, H. (2023). Effect of alginate-based edible coating containing thyme essential oil on quality and microbial safety of fresh-cut potatoes. Horticulturae, 9(5), 543. https://doi.org/10.3390/horticulturae9050543
- Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers, 84(1), 477-483. https://doi.org/10.1016/j.carbpol.2010.12.010
- Gokbulut, I., & Ozturk, F. S. (2018). Use of alginate in food microencapsulation. Batman University Journal of Life Sciences, 8(1/2), 16-28.
- Gutiérrez, T. J., Tapia, M. S., Perez, E., Famα´, L. (2015) Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocolloids. 45, 211-217. https://doi.org/10.1016/j.foodhyd.2014.11.017
- Hammoudi, N., Cherif, H. Z., Borsali, F., Benmansour, K., & Meghezzi, A. (2019). Preparation of active antimicrobial and antifungal alginatemontmorillonite/ lemon essential oil nanocomposite films. Materials Technology, 35(7), 383-394. https://doi.org/10.1080/10667857.2019.1685292
- Hosseini, M. H., Razavi, S. H., & Mousavı, M. A. (2009). Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils. Journal of Food Processing and Preservation, 33(6), 727-743. https://doi.org/10.1111/j.1745-4549.2008.00307.x
- Hu, X., Yuan, L., Han, L., Li, S., & Zhou, W. (2020). The preparation, characterization, anti-ultraviolet and antimicrobial activity of gelatin film incorporated with berberine-HP-β-CD. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124273. https://doi.org/10.1016/j.colsurfa.2019.124273
- Jouki, M., Mortazavi, S. A., Yazdi, F. T., & Koocheki, A. (2014). Characterization of antioxidant antibacterial quince seed mucilage films containing thyme essential oil. Carbohydrate Polymers, 99, 537-546. https://doi.org/10.1016/j.carbpol.2013.08.077
- Kavoosi, G., Dadfar, S. M. M., & Purfard, A. M. (2013). Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. Journal of Food Science, 78(2), E244-E250. https://doi.org/10.1111/1750-3841.12015
- Khodaei, D., Oltrogge, K., & Hamidi-Esfahani, Z. (2020). Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum. LWT Food Science and Technology, 117, 108617. https://doi.org/10.1016/j.lwt.2019.108617
- Kurek, M., Scetar, M., & Galic, K. (2017). Edible coatings minimize fat uptake in deep fat fried products: A review. Food Hydrocolloids, 71, 225-235. https://doi.org/10.1016/j.foodhyd.2017.05.006
- Liu, C., Huang, J., Zheng, X., Liu, S., Lu, K., Tang, K., & Liu, J. (2020). Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packaging and Shelf Life, 24, 100485. https://doi.org/10.1016/j.fpsl.2020.100485
- Mahcene, Z., Khelil, A., Hasni, S., Akman, P. K., Bozkurt, F., Birech, K., … & Tornuk, F. (2019). Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. International Journal of Biological Macromolecules, 145, 124-132. https://doi.org/10.1016/j.ijbiomac.2019.12.093
- Mahcene, Z., Hasni, S., Goudjil, M. B., & Khelil, A. (2021). Food edible coating systems: A review. European Food Science and Engineering, 2(1), 26-33.
- Moey, S. W., Abdullah, A., & Ahmad, I. (2018). Effect of cinnamomum zeylanicum essential oil on the physical and mechanical properties of edible films from kappaphycus alvarezii. Malaysian Applied Biology, 47(5), 197-203.
- Mohamed, S. A. A., El-Sakhawy, M., & El-Sakhawy, M. A.-M. (2020). Polysaccaharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate Polymers, 238, 116178. https://doi.org/10.1016/j.carbpol.2020.116178
- Okcu, Z., Yavuz, Y., & Kerse, S. (2018). Edible film and coating applications in fruits and vegetables. Alinteri Journal of Agricultural Science, 33(2), 221-226. https://doi.org/10.28955/alinterizbd.368362
- Özdestan, Ö., & Üren, A. (2009, Mayıs). Piyasada satılan bazı şalgam suyu örneklerinin renk değerlerinin (L*, a*, b*) belirkenmesi. II. Geleneksel Gıdalar Sempozyumu, Van.
- Pavlath, A. E., & Orts, W. (2009). Edible films and coatings: why, what, and how? In K. C. Huber & M. E. Embuscado (Eds.), Edible films and coatings for food applications (pp 1-23). Springer, New York, NY. https://doi.org/10.1007/978-0-387-92824-1_1
- Peng, Y., & Li, Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloids, 36, 287-293. https://doi.org/10.1016/j.foodhyd.2013.10.013
- Pereda, M., Dufresne, A., Aranguren, M. I., & Marcovich, N. E. (2014). Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydrate Polymers, 101, 1018-1026. https://doi.org/10.1016/j.carbpol.2013.10.046
- Peretto, G., Du, W.-X., Avena-Bustillos, J., De J., Berrios, R. J., Sambo, P., & McHugh, T. H. (2014). Optimization of antimicrobial and physical properties of alginate coatings containing carvacrol and methyl cinnamate for strawberry application. Journal of Agricultural and Food Chemistry, 62(4), 984-990. https://doi.org/10.1021/jf4042886
- Pop, O. L., Pop, C. R., Dufrechou, M., Vodnar, D. C., Socaci, S. A., Dulf, F. V., … & Suharoschi, R. (2019). Edible films and coatings functionalization by probiotic incorporation: A Review. Polymers, 12(1), 12. https://doi.org/10.3390/polym12010012
- Sarengaowa, Hu, W., Jiang, A., Xiu, Z., & Feng, K. (2018). Effect of thyme oil-alginate-based coating on quality and microbial safety of fresh-cut apples. Journal of the Science of Food and Agriculture, 98(6), 2302-2311. https://doi.org/10.1002/jsfa.8720
- Sarıcaoglu, F. T., & Turhan, S. (2020). Physicochemical, antioxidant and antimicrobial properties of mechanically deboned chicken meat protein films enriched with various essential oils. Food Packaging and Shelf Life, 25, 100527. https://doi.org/10.1016/j.fpsl.2020.100527
- Senturk Parreidt, T., Müller, K., & Schmid, M. (2018). Alginate-based edible films and coatings for food packaging applications. Foods, 7(10), 170. https://doi.org/10.3390/foods7100170
- Shahbazi, Y. (2017). The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. International Journal of Biological Macromolecules, 99, 746-753. https://doi.org/10.1016/j.ijbiomac.2017.03.065
- Shakerardekani, A., Hashemi, M., Shahedi, M., & Mirzaalian Dastjerdi, A. (2021) Enhancing the quality of fresh pistachio fruit using sodium alginate enriched with thyme essential oil. Journal of Agricultural Science Technology, 23(1), 65-82.
- Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M. A., Mohammadi, A., Ghasemlou, M., Ojagh, S. M., … & Khaksar, R. (2013). Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. International Journal of Biological Macromolecules, 52, 116-124. https://doi.org/10.1016/j.ijbiomac.2012.08.026
- Tabassum, N., & Khan, M. A. (2020). Modified atmosphere packaging of fresh-cut papaya using alginate based edible coating: Quality evaluation and shelf-life study. Scientia Horticulturae, 259, 108853. https://doi.org/10.1016/j.scienta.2019.108853
- Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579. https://doi.org/10.1016/j.foodchem.2012.03.094
- Ulusoy, B. H., Yıldırım, F. K., & Hecer, C. (2018). Edible films and coatings: A good idea from past to future technology. Journal Food Science and Technology, 5(1), 28-33. https://doi.org/10.18488/journal.58.2018.51.28.33
- Umaraw, P., & Verma, A. K. (2015). Comprehensive review on application of edible film on meat products: An eco-friendly approach. Critical Reviews in Food Science and Nutrition, 57(6), 1270-1279. https://doi.org/10.1080/10408398.2014.986563
- Venturini Antunes, G., Sodré, G. M., Radünz, M., Silva da Rosa, R., Rodrigues, A., Arocha Gularte, M., … & Avila Gandra, E. (2023). Bioactive coating of sodium alginate and agar added with essential oils of thyme (thymus vulgaris l.) and sweet orange (citrus aurantium var. dulcis) with antimicrobial properties applied over strawberries. Revista Chilena de Nutrición, 50(3), 281-290. http://dx.doi.org/10.4067/s0717-75182023000300281
- Xu, B. J., & Chang, S. K. C. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science, 72(2), 159-166. https://doi.org/10.1111/j.1750-3841.2006.00260.x
- Yan, Q., Zhang, J., Dong, H., Hou, H., & Guo, P. (2012). Properties and antimicrobial activities of starch-sodium alginate composite films incorporated with sodium dehydroacetate or rosemary extract. Journal of Applied Polymer Science, 127(3), 1951-1958. https://doi.org/10.1002/app.37570