Research Article
BibTex RIS Cite

Bir Dielektrik Tepki Analizi

Year 2020, Volume: 25 Issue: 3, 107 - 116, 30.12.2020

Abstract

Bu çalışmada, klasik dispersiyon teorisi çerçevesinde dielektrik spektrumun matematiksel bir analizi yapılmaktadır. Bu analiz, bir kompleks düzlem analizidir. Bu analizle dielektrik fonksiyonun sanal kısmını temel bileşenlerine ayırmak için bir bütüncül analitik yöntem türetilmektedir. Dielektrik fonksiyonun kompleks özelliği kullanılarak bir kompleks düzlem oluşturulmuştur. Bu düzlemde, bir çembere tamamlanan her bir ε_2 (ε_1-1) fonksiyon döngüsü, tek bir Lorentz osilatörü için lineer optik tepkiyi temsil eder. Her bir Lorentz osilatörünün, doğal frekans, enerji ve yarı genişlik gibi parametreleri, bu çemberler analiz edilerek hesaplanır.

References

  • Aleynikova, K. B., Kozlov, A. I., Kozlova, S. G., & Sobolev, V. V. (2004). Crystal chemistry and optical properties of monoclinic zinc diphosphide. Moldavian Journal of the Physical Sciences, 3, 137-148.
  • Cabuk, S., & Mamedov, A. (2004). Argand diagram and oscillation description of electron state in ferroelastic crystals. Ferroelectrics, 307, 19-23. doi: 10.1080/00150190490492187
  • Desmos Inc. ATTN. https://www.desmos.com/. Accessed date: 16 May 2020.
  • Erzen, M., & Akkus, H. (2018). Computation of physical properties of ferroelectric RbNbO3 under pressure. Ferroelectrics, 526, 120-139. doi:10.1080/00150193.2018.1456302
  • Fox, M. (2001). Optical Properties of Solids. Oxford, UK: Oxford University Press.
  • Hodgson, J. N. (1970). Optical Absorption and Dispersion in Solids. London, UK: Butler and Tanner Ltd.
  • Kalugin, A. U., & Sobolev, V. V. (2005). Electronic structure of cadmium fluoride. Physical Review B. 71, 15112: 1-7. doi: 10.1103/PhysRevB.71.115112
  • Lorentz, H. A. (1916). The Theory of Electrons and Its Applications to The Phenomena of Light and Radiant Heat. Leibzig, Germany: B.G. Teubner.
  • Moss, T. S. (1959). Optical Properties of Semi-conductors. London, UK: Butterworths.
  • Nye, J. F. (1957). Physical Properties of Crystals. Oxford, UK: Clerendon Press.
  • Peiponen, K. E., Vartiainen, E. M., & Asakura, T. (1999). Dispersion, Complex Analysis and Optical Spectroscopy. Berlin, Germany: Springer-Verlag.
  • Piccard, R. D. (1986). Argand diagrams, harmonic oscillators, and record-playing tonearms. American Journal of Physics, 54, 342-345. doi: 10.1119/1.14618
  • Sobolev, V. V., Timonov, A. P., & Sobolev, V. Val. (2000). Oscillator strengths and transition energies of diamond. Optics and Spectroscopy, 88, 883–887.
  • Wooten, F. (1972). Optical Properties of Solids. London, UK: Academic Press.

An Analysis of Dielectric Response

Year 2020, Volume: 25 Issue: 3, 107 - 116, 30.12.2020

Abstract

We perform a mathematical analysis of the dielectric spectrum within the framework of classical dispersion theory. The analysis is a complex plane analysis. With this analysis, a holistic analytical method is derived to decompose the imaginary part of dielectric function into its fundamental components. A complex plane is formed using the complex feature of the dielectric function. In this plane, each loop of the function ε_2 (ε_1-1), which completed to a circle, represents the linear optical response for a single Lorentz oscillator. The parameters of each Lorentz oscillator such as natural frequency, energy, and half-width are calculated by analyzing the circles.

References

  • Aleynikova, K. B., Kozlov, A. I., Kozlova, S. G., & Sobolev, V. V. (2004). Crystal chemistry and optical properties of monoclinic zinc diphosphide. Moldavian Journal of the Physical Sciences, 3, 137-148.
  • Cabuk, S., & Mamedov, A. (2004). Argand diagram and oscillation description of electron state in ferroelastic crystals. Ferroelectrics, 307, 19-23. doi: 10.1080/00150190490492187
  • Desmos Inc. ATTN. https://www.desmos.com/. Accessed date: 16 May 2020.
  • Erzen, M., & Akkus, H. (2018). Computation of physical properties of ferroelectric RbNbO3 under pressure. Ferroelectrics, 526, 120-139. doi:10.1080/00150193.2018.1456302
  • Fox, M. (2001). Optical Properties of Solids. Oxford, UK: Oxford University Press.
  • Hodgson, J. N. (1970). Optical Absorption and Dispersion in Solids. London, UK: Butler and Tanner Ltd.
  • Kalugin, A. U., & Sobolev, V. V. (2005). Electronic structure of cadmium fluoride. Physical Review B. 71, 15112: 1-7. doi: 10.1103/PhysRevB.71.115112
  • Lorentz, H. A. (1916). The Theory of Electrons and Its Applications to The Phenomena of Light and Radiant Heat. Leibzig, Germany: B.G. Teubner.
  • Moss, T. S. (1959). Optical Properties of Semi-conductors. London, UK: Butterworths.
  • Nye, J. F. (1957). Physical Properties of Crystals. Oxford, UK: Clerendon Press.
  • Peiponen, K. E., Vartiainen, E. M., & Asakura, T. (1999). Dispersion, Complex Analysis and Optical Spectroscopy. Berlin, Germany: Springer-Verlag.
  • Piccard, R. D. (1986). Argand diagrams, harmonic oscillators, and record-playing tonearms. American Journal of Physics, 54, 342-345. doi: 10.1119/1.14618
  • Sobolev, V. V., Timonov, A. P., & Sobolev, V. Val. (2000). Oscillator strengths and transition energies of diamond. Optics and Spectroscopy, 88, 883–887.
  • Wooten, F. (1972). Optical Properties of Solids. London, UK: Academic Press.
There are 14 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Fayrooz Al-basree This is me 0000-0002-2161-9860

Harun Akkus 0000-0003-1266-304X

Publication Date December 30, 2020
Submission Date August 28, 2020
Published in Issue Year 2020 Volume: 25 Issue: 3

Cite

APA Al-basree, F., & Akkus, H. (2020). An Analysis of Dielectric Response. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(3), 107-116.