Research Article
BibTex RIS Cite

Dual Sonlu Yarı Basit Yükseltilebilir Modüller

Year 2023, Volume: 28 Issue: 2, 424 - 431, 31.08.2023
https://doi.org/10.53433/yyufbed.1143435

Abstract

$N\,P-$modülünün dual sonlu her $S$ alt modülü $N=U'\oplus V,\,\,U'\subseteq S$ve $S\cap V\subseteq Soc_{s}(V)$olacak şekilde bir ayrışıma sahip ise $N\,R-$modülüne dual sonlu yarı basit yükseltilebilir modül veya kısaca dual sonlu ss-yükseltilebilir modül denir. Bu çalışmada, bu tanıma denk koşullar verilmiştir. Buna ek olarak, makalede tanımlanan bu kavramın basit özellikleri incelenmiştir.

References

  • Eryılmaz, F. (2021). SS-lifting modules and rings. Miskolc Mathematical Notes, 22(2), 655-662. doi:10.18514/mmn.2021.3245
  • Kasch, F. (1982). Modules and Rings. London, UK: Academic Press Inc.
  • Kaynar, E., Turkmen, E., & Çalışıcı, H. (2020). SS-supplemented modules. Communications Faculty of Sciences, University of Ankara, Series A1, Mathematics and Statistics, 69(1), 473 485. doi:10.31801/cfsuasmas.585727
  • Keskin, D. (2000). On lifting modules. Communications in Algebra, 28(7),3427-3440. doi:10.1080/00927870008827034
  • Mohamed, S. H., & Müller, B. J. (1990). Continuous and Discrete Modules. Cambridge, England: Cambridge University Press.
  • Türkmen, B. N., & Türkmen, E. (2020). supplemented modules and rings. Analele ştiinţifice ale Universităţii "Ovidius" Constanţa. Seria Matematică, 28(3), 193-216. doi:10.2478/auom-2020-0041
  • Türkmen, B. N., & Kılıç, B. (2022). On cofinitely ss-supplemented modules. Algebra and Discrete Mathematics, 34(1), 141-151. doi:10.12958/adm1668
  • Tribak, R. (2008). On cofinitely lifting and cofinitely weak lifting modules. Communications in Algebra, 36(12), 4448-4460. doi:10.1080/00927870802179552
  • Sözen, E. Ö. (2022). A study on Ss-semilocal modules in view of singularity. Malaya Journal of Matematik, 10(1), 90-97. doi:10.26637/mjm1001/008
  • Özcan, A. Ç., Harmancı, A., & Smith, P. F. (2006). Duo modules. Glasgow Mathematical Journal, 48(3), 533-545. doi:10.1017/S0017089506003260
  • Wang, Y. & Wu, D. (2010). On cofinitely lifting modules. Algebra Colloquium, 17(4), 659-666. doi:10.1142/S1005386710000635
  • Wisbauer, R. (1991). Foundations of Module and Ring Theory. London, UK: Routledge. doi:10.1201/9780203755532
  • Zhou, D. X., & Zhang, X. R. (2011). Small-essential submodules and morita duality. Southeast Asian Bulletin of Mathematics, 35(6), 1051-1062.
  • Zöschinger, H. (1974). Komplementierte moduln uber dedekindringen. Journal of Algebra, 29, 42-56.

Cofinitely Semisimple (ss-) Lifting Modules

Year 2023, Volume: 28 Issue: 2, 424 - 431, 31.08.2023
https://doi.org/10.53433/yyufbed.1143435

Abstract

An $P-$module $N$ is named cofinitely semisimple lifting or briefly cofinitely $ss-$lifting if for each cofinite submodule $S$ of $N$, $N$ has a decomposition $N=U'\oplus V$ such that $U'\subseteq S$ and $S\cap V\subseteq Soc_{s}(V)$. In this study, equivalent conditions to this definition are given. In addition, the basic features of this concept defined in this article are examined.

References

  • Eryılmaz, F. (2021). SS-lifting modules and rings. Miskolc Mathematical Notes, 22(2), 655-662. doi:10.18514/mmn.2021.3245
  • Kasch, F. (1982). Modules and Rings. London, UK: Academic Press Inc.
  • Kaynar, E., Turkmen, E., & Çalışıcı, H. (2020). SS-supplemented modules. Communications Faculty of Sciences, University of Ankara, Series A1, Mathematics and Statistics, 69(1), 473 485. doi:10.31801/cfsuasmas.585727
  • Keskin, D. (2000). On lifting modules. Communications in Algebra, 28(7),3427-3440. doi:10.1080/00927870008827034
  • Mohamed, S. H., & Müller, B. J. (1990). Continuous and Discrete Modules. Cambridge, England: Cambridge University Press.
  • Türkmen, B. N., & Türkmen, E. (2020). supplemented modules and rings. Analele ştiinţifice ale Universităţii "Ovidius" Constanţa. Seria Matematică, 28(3), 193-216. doi:10.2478/auom-2020-0041
  • Türkmen, B. N., & Kılıç, B. (2022). On cofinitely ss-supplemented modules. Algebra and Discrete Mathematics, 34(1), 141-151. doi:10.12958/adm1668
  • Tribak, R. (2008). On cofinitely lifting and cofinitely weak lifting modules. Communications in Algebra, 36(12), 4448-4460. doi:10.1080/00927870802179552
  • Sözen, E. Ö. (2022). A study on Ss-semilocal modules in view of singularity. Malaya Journal of Matematik, 10(1), 90-97. doi:10.26637/mjm1001/008
  • Özcan, A. Ç., Harmancı, A., & Smith, P. F. (2006). Duo modules. Glasgow Mathematical Journal, 48(3), 533-545. doi:10.1017/S0017089506003260
  • Wang, Y. & Wu, D. (2010). On cofinitely lifting modules. Algebra Colloquium, 17(4), 659-666. doi:10.1142/S1005386710000635
  • Wisbauer, R. (1991). Foundations of Module and Ring Theory. London, UK: Routledge. doi:10.1201/9780203755532
  • Zhou, D. X., & Zhang, X. R. (2011). Small-essential submodules and morita duality. Southeast Asian Bulletin of Mathematics, 35(6), 1051-1062.
  • Zöschinger, H. (1974). Komplementierte moduln uber dedekindringen. Journal of Algebra, 29, 42-56.
There are 14 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Natural Sciences and Mathematics / Fen Bilimleri ve Matematik
Authors

Figen Eryılmaz 0000-0002-4178-971X

Publication Date August 31, 2023
Submission Date July 13, 2022
Published in Issue Year 2023 Volume: 28 Issue: 2

Cite

APA Eryılmaz, F. (2023). Cofinitely Semisimple (ss-) Lifting Modules. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 424-431. https://doi.org/10.53433/yyufbed.1143435