Research Article
BibTex RIS Cite

Bazı Ticari Lipazların Polietilenimin ile Kompleks Oluşturma Özelliklerinin Araştırılması

Year 2024, Volume: 29 Issue: 1, 189 - 199, 30.04.2024
https://doi.org/10.53433/yyufbed.1319182

Abstract

Lipazlar, çok sayıda endüstriyel proseste kullanılan enzimlerdir ve biyokatalizör olarak uygulanabilirliklerini artırmak için immobilize edilmektedirler. Bu çalışmada, Novozyme 51032 (Fusarium solani pisi), Palatase 20000 L (Rhizomucor miehei), Lipolase 100 L (Thermomyces lanuginosus), Lipozyme CAL B L (Candida antarctica B) ve Amano (Pseudomonas fluorescens) kaynaklı ticari enzimlerin, polietilenimin (PEI) ile kompleks ve agregat oluşturması incelenmiştir. Enzimlerin, polietilenimin ile en iyi kompleks oluşturduğu PEI/enzim oranının; Novozyme 51032, Palatase 20000 L ve Lipolase 100 L için 1/20-80 aralığında olduğu görülmüştür. Lipozyme CAL B L ve (Amano) P. fluorescens, PEI ile agregat oluşturamamıştır. Bu çalışma; bazı ticari enzimlerin, PEI ile agregat oluşturmasını engelleyen çeşitli safsızlıklar içerebileceğini göstermiştir. Polietileniminin-enzim kompleksi, katyonik bir polimer olan PEI’ nin, enzimlerle elektrostatik etkileşimi esasına dayanmaktadır.

Supporting Institution

Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Proje Merkezi

Project Number

2015-MIM-B110

Thanks

Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Proje Merkezi'ne desteklerinden dolayı teşekkürü bir borç biliriz..

References

  • Albayrak, N., & Yang, S. T. (2002). Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose. Biotechnology Progress, 18(2), 240-251. doi:10.1021/bp010167b
  • Almeida, F. L. C., Castro, M. P. J., Travália, B. M., & Forte, M. B. S. (2021). Trends in lipase immobilization: Bibliometric review and patent analysis. Process Biochemistry, 110, 37-51. doi:10.1016/J.PROCBIO.2021.07.005
  • Andersson, M. M., & Hatti-Kaul, R. (1999). Protein stabilising effect of polyethyleneimine. Journal of Biotechnology, 72(1-2), 21-31. doi:10.1016/S0168-1656(99)00050-4
  • Arana-Peña, S., Lokha, Y., & Fernández-Lafuente, R. (2019). Immobilization on octyl-agarose beads and some catalytic features of commercial preparations of lipase a from Candida antarctica (Novocor ADL): Comparison with immobilized lipase B from Candida antarctica. Biotechnology Progress, 35(1). doi:10.1002/BTPR.2735
  • Arana-Peña, S., Rios, N. S., Mendez-Sanchez, C., Lokha, Y., Gonçalves, L. R. B., & Fernández-Lafuente, R. (2020). Use of polyethylenimine to produce immobilized lipase multilayers biocatalysts with very high volumetric activity using octyl-agarose beads: Avoiding enzyme release during multilayer production. Enzyme and Microbial Technology, 137, 109535. doi:10.1016/J.ENZMICTEC.2020.109535
  • Bilal, M., Fernandes, C. D., Mehmood, T., Nadeem, F., Tabassam, Q., & Ferreira, L. F. R. (2021). Immobilized lipases-based nano-biocatalytic systems — A versatile platform with incredible biotechnological potential. International Journal of Biological Macromolecules, 175, 108-122. doi:10.1016/J.IJBIOMAC.2021.02.010
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of micro- gram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3
  • Carvalho, A. P. A., & Conte-Junior, C. A. (2021). Food-derived biopolymer kefiran composites, nanocomposites and nanofibers: Emerging alternatives to food packaging and potentials in nanomedicine. Trends in Food Science and Technology, 116, 370-386. doi:10.1016/j.tifs.2021.07.038
  • Chen, Z., Lv, Z., Sun, Y., Chi, Z., & Qing, G. (2020). Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. Journal of Materials Chemistry B, 8(15), 2951-2973. doi:10.1039/c9tb02271f
  • Costa, L. R., Soares, A. M., Franca, S. C., Trevvisan, H. C., & Roberts, T. J. C. (2003). Immobilization of lipases and assay in continuous fixed bed reactor. Protein & Peptide Letters, 10(6), 619-628. doi:10.2174/0929866033478573
  • Dash, A., & Banerjee, R. (2021). Exploring indigenously produced celite-immobilized Rhizopus oryzae NRRL 3562-lipase for biodiesel production. Energy, 222, 119950. doi:10.1016/J.ENERGY.2021.119950
  • Guimarães, J. R., Carballares, D., Tardioli, P. W., Rocha-Martin, J., & Fernandez-Lafuente, R. (2022). Tuning ımmobilized commercial lipase preparations features by simple treatment with Metallic Phosphate Salts. Molecules, 27(14), 1-13. doi:10.3390/molecules27144486
  • Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39(2), 235-251. doi:10.1016/J.ENZMICTEC.2005.10.016
  • Hasan, F., Shah, A. A., & Hameed, A. (2009). Methods for detection and characterization of lipases: A comprehensive review. Biotechnology Advances, 27(6), 782-798. doi:10.1016/J.BIOTECHADV.2009.06.001
  • Ismail, A. R., Kashtoh, H., & Baek, K. H. (2021). Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications. International Journal of Biological Macromolecules, 187, 127-142. doi:10.1016/J.IJBIOMAC.2021.07.101
  • Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., ..., & Nadeem, H. (2018). Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology, 132, 23-34. doi:10.1016/J.PBIOMOLBIO.2017.07.014
  • Jiang, F., Zhao, W., Wu, Y., Wu, Y., Liu, G., Dong, J., & Zhou, K. (2019). A polyethyleneimine-grafted graphene oxide hybrid nanomaterial: Synthesis and anti-corrosion applications. Applied Surface Science, 479, 963-973. doi:10.1016/j.apsusc.2019.02.193
  • Karimpil, J. J., Melo, J. S., & D’Souza, S. F. (2012). Immobilization of lipase on cotton cloth using the layer-by-layer self-assembly technique. International Journal of Biological Macromolecules, 50(1), 300-302. doi:10.1016/J.IJBIOMAC.2011.10.019
  • Liu, M., Jia, L., Zhao, Z., Han, Y., Li, Y., Peng, Q., & Zhang, Q. (2020). Fast and robust lead (II) removal from water by bioinspired amyloid lysozyme fibrils conjugated with polyethyleneimine (PEI). Chemical Engineering Journal, 390, 124667. doi:10.1016/j.cej.2020.124667
  • Llerena-Suster, C. R., Briand, L. E., & Morcelle, S. R. (2014). Analytical characterization and purification of a commercial extract of enzymes: A case study. Colloids and Surfaces B: Biointerfaces, 121, 11-20. doi:10.1016/j.colsurfb.2014.05.029
  • Mathesh, M., Luan, B., Akanbi, T. O., Weber, J. K., Liu, J., Barrow, C. J., Zhou, R., & Yang, W. (2016). Opening Lids: Modulation of Lipase Immobilization by Graphene Oxides. ACS Catalysis, 6(7), 4760-4768. doi:10.1021/acscatal.6b00942
  • Mittersteiner, M., Machado, T. M., De Jesus, P. C., Brondani, P. B., Scharf, D. R., & Wendhausen, R. (2017). Easy and simple SiO2 immobilization of lipozyme CaLB-L: Its use as a catalyst in acylation reactions and comparison with other lipases. Journal of the Brazilian Chemical Society, 28(7), 1185-1192. doi:10.21577/0103-5053.20160277
  • Mokhtar, N. F., Rahman, R. N. Z., Sani, F., & Ali, M. S. (2021). Extraction and reimmobilization of used commercial lipase from industrial waste. International Journal of Biological Macromolecules, 176, 413-423. doi:10.1016/j.ijbiomac.2021.02.001
  • Monteiro, R. R. C., Lima, P. J. M., Pinheiro, B. B., Freire, T. M., Dutra, L. M. U., Fechine, P. B. A., ..., & Fernandez-Lafuente, R. (2019). Immobilization of lipase a from Candida antarctica onto Chitosan-coated magnetic nanoparticles. International Journal of Molecular Sciences, 20(16), 4018. doi:10.3390/ijms20164018
  • Monteiro, R. R. C., Arana-Peña, S., da Rocha, T. N., Miranda, L. P., Berenguer-Murcia, Á., Tardioli, P. W., dos Santos, J. C. S., & Fernandez-Lafuente, R. (2021a). Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution? Renewable Energy, 164, 1566-1587. doi:10.1016/J.RENENE.2020.10.071
  • Monteiro, R. R. C., Virgen-Ortiz, J. J., Berenguer-Murcia, Á., da Rocha, T. N., dos Santos, J. C. S., Alcántara, A. R., & Fernandez-Lafuente, R. (2021b). Biotechnological relevance of the lipase A from Candida antarctica. Catalysis Today, 362, 141-154. doi:10.1016/J.CATTOD.2020.03.026
  • Nguyen, H. H., & Kim, M. (2017). An Overview of Techniques in Enzyme Immobilization. Applied Science and Convergence Technology, 26(6), 157-163. doi:10.5757/asct.2017.26.6.157
  • Ondul, E., Dizge, N., & Albayrak, N. (2012). Immobilization of Candida antarctica A and Thermomyces lanuginosus lipases on cotton terry cloth fibrils using polyethyleneimine. Colloids and Surfaces B: Biointerfaces, 95, 109-114. doi:10.1016/j.colsurfb.2012.02.020
  • Peirce, S., Tacias-Pascacio, V. G., Russo, M. E., Marzocchella, A., Virgen-Ortíz, J. J., & Fernandez-Lafuente, R. (2016). Stabilization of Candida antarctica Lipase B (CALB) immobilized on octyl agarose by treatment with polyethyleneimine (PEI). Molecules, 21(6), 751. doi:10.3390/molecules21060751
  • Rodrigues, R. C., Virgen-Ortíz, J. J., dos Santos, J. C. S., Berenguer-Murcia, Á., Alcantara, A. R., Barbosa, O., Ortiz, C., & Fernandez-Lafuente, R. (2019). Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnology Advances, 37(5), 746-770. doi:10.1016/J.BIOTECHADV.2019.04.003
  • Sampaio, C. S., Angelotti, J. A. F., Fernandez-Lafuente, R., & Hirata, D. B. (2022). Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects-A review. International Journal of Biological Macromolecules, 215, 434-449. doi:10.1016/j.ijbiomac.2022.06.139
  • Sharma, S., Kanwar, K., & Kanwar, S. S. (2016). Ascorbyl palmitate synthesis in an organic solvent system using a Celite-immobilized commercial lipase (Lipolase 100L). 3 Biotech, 6(2), 1-10. doi:10.1007/s13205-016-0486-7
  • Singh, B., Maharjan, S., Park, T. E., Jiang, T., Kang, S. K., Choi, Y. J., & Cho, C. S. (2015). Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: Staying in or out of the endosomes. Macromolecular Bioscience, 15(5), 622-635. doi:10.1002/mabi.201400463
  • Soares, J. C., Moreira, P. R., Queiroga, A. C., Morgado, J., Malcata, F. X., & Pintado, M. E. (2011). Application of immobilized enzyme technologies for the textile industry: A review. Biocatalysis and Biotransformation, 29(6), 223-237. doi:10.3109/10242422.2011.635301
  • Sun, B., Hong, W., Thibau, E. S., Aziz, H., Lu, Z. H., & Li, Y. (2015). Polyethylenimine (PEI) As an effective dopant to conveniently convert Ambipolar and p-Type Polymers into Unipolar n-Type Polymers. ACS Applied Materials and Interfaces, 7(33), 18662-18671. doi:10.1021/acsami.5b05097
  • Tocco, D., Carucci, C., Todde, D., Shortall, K., Otero, F., Sanjust, E., Magner, E., & Salis, A. (2021). Enzyme immobilization on metal organic frameworks: Laccase from Aspergillus sp. is better adapted to ZIF-zni rather than Fe-BTC. Colloids and Surfaces B: Biointerfaces, 208, 112147. doi:10.1016/J.COLSURFB.2021.112147
  • Virgen-Ortíz, J. J., Dos Santos, J. C. S., Berenguer-Murcia, Á., Barbosa, O., Rodrigues, R. C., & Fernandez-Lafuente, R. (2017). Polyethylenimine: A very useful ionic polymer in the design of immobilized enzyme biocatalysts. Journal of Materials Chemistry B, 5(36), 7461-7490. doi:10.1039/c7tb01639e
  • Wang, X., He, L., Huang, J., & Zhong, N. (2021). Immobilization of lipases onto the halogen & haloalkanes modified SBA-15: Enzymatic activity and glycerolysis performance study. International Journal of Biological Macromolecules, 169, 239-250. doi:10.1016/J.IJBIOMAC.2020.12.111
  • Widmann, M., Juhl, B., & Pleiss, J. (2010). Structural classification by the Lipase Engineering Database: a case study of Candida antarctica lipase A structures and a set of analysis tools including phylogenetic trees and HMM profiles. BMC Genomics, 19(11), 123. doi:10.1186/1471-2164-11-123.
  • Wu, P., Zhang, M., Zhang, Y., Wang, Z., & Zheng, J. (2020). A novel lipase from Aspergillus oryzae catalyzed resolution of (R,S)-ethyl 2-bromoisovalerate. Chirality, 32(2), 231-238. doi:10.1002/CHIR.23160
  • Wu, S., Zhang, P., Sun, B., Wu, Y., Huang, M., Luo, Z., Ma, Y., & Tang, K. (2023). Polyethyleneimine-MOF composite as a support for immobilization of lipase with enhanced activity in kinetic resolution. Applied Catalysis A: General, 661(April), 119232. doi:10.1016/j.apcata.2023.119232
  • Zhou, W., Zhou, X., Zhuang, W., Lin, R., Zhao, Y., Ge, L., ..., & Ying, H. (2021). Toward controlled geometric structure and surface property heterogeneities of TiO2 for lipase immobilization. Process Biochemistry, 110, 118-128. doi:10.1016/J.PROCBIO.2021.08.004

Investigation of Complexing Properties with Polyethyleneimine of Some Commercial Lipases

Year 2024, Volume: 29 Issue: 1, 189 - 199, 30.04.2024
https://doi.org/10.53433/yyufbed.1319182

Abstract

Lipases are enzymes used in various industrial process and are immobilized to increase their applicability as biocatalysts. Ionic polymers such as polyethyleneimine (PEI) make possible the co-precipitation of enzymes. In this study, complexation and aggregation with PEI of enzymes were investigated with commercial enzymes from Novozyme 51032 (Fusarium solani pisi), Palatase 20000 L (Rhizomucor miehei), Lipolase 100 L (Thermomyces lanuginosus), Lipozyme CAL B L (Candida antarctica B) and Amano (Pseudomonas fluorescens) using PEI as a linker and aggregation agent. The highest percentage of PEI-enzyme agregate was obtained for Novozyme 51032, Palatase 20000 L and Lipolase 100 L at the PEI/enzyme ratio of a 1/20-1/80 range. This study documented that Lipozyme CAL B L and (Amano) P. fluorescens enzyme preparations failed to occur precipitates resulting PEI-enzyme aggregates. The some commercial lipase preparations may contain various impurity components that prevent complexation or aggregation with PEI. Complexing with PEI of lipases is based on of basis electrostatic interaction of enzyme with PEI as a cationic polymer resulting in PEI-lipase aggregates.

Project Number

2015-MIM-B110

References

  • Albayrak, N., & Yang, S. T. (2002). Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose. Biotechnology Progress, 18(2), 240-251. doi:10.1021/bp010167b
  • Almeida, F. L. C., Castro, M. P. J., Travália, B. M., & Forte, M. B. S. (2021). Trends in lipase immobilization: Bibliometric review and patent analysis. Process Biochemistry, 110, 37-51. doi:10.1016/J.PROCBIO.2021.07.005
  • Andersson, M. M., & Hatti-Kaul, R. (1999). Protein stabilising effect of polyethyleneimine. Journal of Biotechnology, 72(1-2), 21-31. doi:10.1016/S0168-1656(99)00050-4
  • Arana-Peña, S., Lokha, Y., & Fernández-Lafuente, R. (2019). Immobilization on octyl-agarose beads and some catalytic features of commercial preparations of lipase a from Candida antarctica (Novocor ADL): Comparison with immobilized lipase B from Candida antarctica. Biotechnology Progress, 35(1). doi:10.1002/BTPR.2735
  • Arana-Peña, S., Rios, N. S., Mendez-Sanchez, C., Lokha, Y., Gonçalves, L. R. B., & Fernández-Lafuente, R. (2020). Use of polyethylenimine to produce immobilized lipase multilayers biocatalysts with very high volumetric activity using octyl-agarose beads: Avoiding enzyme release during multilayer production. Enzyme and Microbial Technology, 137, 109535. doi:10.1016/J.ENZMICTEC.2020.109535
  • Bilal, M., Fernandes, C. D., Mehmood, T., Nadeem, F., Tabassam, Q., & Ferreira, L. F. R. (2021). Immobilized lipases-based nano-biocatalytic systems — A versatile platform with incredible biotechnological potential. International Journal of Biological Macromolecules, 175, 108-122. doi:10.1016/J.IJBIOMAC.2021.02.010
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of micro- gram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3
  • Carvalho, A. P. A., & Conte-Junior, C. A. (2021). Food-derived biopolymer kefiran composites, nanocomposites and nanofibers: Emerging alternatives to food packaging and potentials in nanomedicine. Trends in Food Science and Technology, 116, 370-386. doi:10.1016/j.tifs.2021.07.038
  • Chen, Z., Lv, Z., Sun, Y., Chi, Z., & Qing, G. (2020). Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. Journal of Materials Chemistry B, 8(15), 2951-2973. doi:10.1039/c9tb02271f
  • Costa, L. R., Soares, A. M., Franca, S. C., Trevvisan, H. C., & Roberts, T. J. C. (2003). Immobilization of lipases and assay in continuous fixed bed reactor. Protein & Peptide Letters, 10(6), 619-628. doi:10.2174/0929866033478573
  • Dash, A., & Banerjee, R. (2021). Exploring indigenously produced celite-immobilized Rhizopus oryzae NRRL 3562-lipase for biodiesel production. Energy, 222, 119950. doi:10.1016/J.ENERGY.2021.119950
  • Guimarães, J. R., Carballares, D., Tardioli, P. W., Rocha-Martin, J., & Fernandez-Lafuente, R. (2022). Tuning ımmobilized commercial lipase preparations features by simple treatment with Metallic Phosphate Salts. Molecules, 27(14), 1-13. doi:10.3390/molecules27144486
  • Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39(2), 235-251. doi:10.1016/J.ENZMICTEC.2005.10.016
  • Hasan, F., Shah, A. A., & Hameed, A. (2009). Methods for detection and characterization of lipases: A comprehensive review. Biotechnology Advances, 27(6), 782-798. doi:10.1016/J.BIOTECHADV.2009.06.001
  • Ismail, A. R., Kashtoh, H., & Baek, K. H. (2021). Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications. International Journal of Biological Macromolecules, 187, 127-142. doi:10.1016/J.IJBIOMAC.2021.07.101
  • Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., ..., & Nadeem, H. (2018). Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology, 132, 23-34. doi:10.1016/J.PBIOMOLBIO.2017.07.014
  • Jiang, F., Zhao, W., Wu, Y., Wu, Y., Liu, G., Dong, J., & Zhou, K. (2019). A polyethyleneimine-grafted graphene oxide hybrid nanomaterial: Synthesis and anti-corrosion applications. Applied Surface Science, 479, 963-973. doi:10.1016/j.apsusc.2019.02.193
  • Karimpil, J. J., Melo, J. S., & D’Souza, S. F. (2012). Immobilization of lipase on cotton cloth using the layer-by-layer self-assembly technique. International Journal of Biological Macromolecules, 50(1), 300-302. doi:10.1016/J.IJBIOMAC.2011.10.019
  • Liu, M., Jia, L., Zhao, Z., Han, Y., Li, Y., Peng, Q., & Zhang, Q. (2020). Fast and robust lead (II) removal from water by bioinspired amyloid lysozyme fibrils conjugated with polyethyleneimine (PEI). Chemical Engineering Journal, 390, 124667. doi:10.1016/j.cej.2020.124667
  • Llerena-Suster, C. R., Briand, L. E., & Morcelle, S. R. (2014). Analytical characterization and purification of a commercial extract of enzymes: A case study. Colloids and Surfaces B: Biointerfaces, 121, 11-20. doi:10.1016/j.colsurfb.2014.05.029
  • Mathesh, M., Luan, B., Akanbi, T. O., Weber, J. K., Liu, J., Barrow, C. J., Zhou, R., & Yang, W. (2016). Opening Lids: Modulation of Lipase Immobilization by Graphene Oxides. ACS Catalysis, 6(7), 4760-4768. doi:10.1021/acscatal.6b00942
  • Mittersteiner, M., Machado, T. M., De Jesus, P. C., Brondani, P. B., Scharf, D. R., & Wendhausen, R. (2017). Easy and simple SiO2 immobilization of lipozyme CaLB-L: Its use as a catalyst in acylation reactions and comparison with other lipases. Journal of the Brazilian Chemical Society, 28(7), 1185-1192. doi:10.21577/0103-5053.20160277
  • Mokhtar, N. F., Rahman, R. N. Z., Sani, F., & Ali, M. S. (2021). Extraction and reimmobilization of used commercial lipase from industrial waste. International Journal of Biological Macromolecules, 176, 413-423. doi:10.1016/j.ijbiomac.2021.02.001
  • Monteiro, R. R. C., Lima, P. J. M., Pinheiro, B. B., Freire, T. M., Dutra, L. M. U., Fechine, P. B. A., ..., & Fernandez-Lafuente, R. (2019). Immobilization of lipase a from Candida antarctica onto Chitosan-coated magnetic nanoparticles. International Journal of Molecular Sciences, 20(16), 4018. doi:10.3390/ijms20164018
  • Monteiro, R. R. C., Arana-Peña, S., da Rocha, T. N., Miranda, L. P., Berenguer-Murcia, Á., Tardioli, P. W., dos Santos, J. C. S., & Fernandez-Lafuente, R. (2021a). Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution? Renewable Energy, 164, 1566-1587. doi:10.1016/J.RENENE.2020.10.071
  • Monteiro, R. R. C., Virgen-Ortiz, J. J., Berenguer-Murcia, Á., da Rocha, T. N., dos Santos, J. C. S., Alcántara, A. R., & Fernandez-Lafuente, R. (2021b). Biotechnological relevance of the lipase A from Candida antarctica. Catalysis Today, 362, 141-154. doi:10.1016/J.CATTOD.2020.03.026
  • Nguyen, H. H., & Kim, M. (2017). An Overview of Techniques in Enzyme Immobilization. Applied Science and Convergence Technology, 26(6), 157-163. doi:10.5757/asct.2017.26.6.157
  • Ondul, E., Dizge, N., & Albayrak, N. (2012). Immobilization of Candida antarctica A and Thermomyces lanuginosus lipases on cotton terry cloth fibrils using polyethyleneimine. Colloids and Surfaces B: Biointerfaces, 95, 109-114. doi:10.1016/j.colsurfb.2012.02.020
  • Peirce, S., Tacias-Pascacio, V. G., Russo, M. E., Marzocchella, A., Virgen-Ortíz, J. J., & Fernandez-Lafuente, R. (2016). Stabilization of Candida antarctica Lipase B (CALB) immobilized on octyl agarose by treatment with polyethyleneimine (PEI). Molecules, 21(6), 751. doi:10.3390/molecules21060751
  • Rodrigues, R. C., Virgen-Ortíz, J. J., dos Santos, J. C. S., Berenguer-Murcia, Á., Alcantara, A. R., Barbosa, O., Ortiz, C., & Fernandez-Lafuente, R. (2019). Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnology Advances, 37(5), 746-770. doi:10.1016/J.BIOTECHADV.2019.04.003
  • Sampaio, C. S., Angelotti, J. A. F., Fernandez-Lafuente, R., & Hirata, D. B. (2022). Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects-A review. International Journal of Biological Macromolecules, 215, 434-449. doi:10.1016/j.ijbiomac.2022.06.139
  • Sharma, S., Kanwar, K., & Kanwar, S. S. (2016). Ascorbyl palmitate synthesis in an organic solvent system using a Celite-immobilized commercial lipase (Lipolase 100L). 3 Biotech, 6(2), 1-10. doi:10.1007/s13205-016-0486-7
  • Singh, B., Maharjan, S., Park, T. E., Jiang, T., Kang, S. K., Choi, Y. J., & Cho, C. S. (2015). Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: Staying in or out of the endosomes. Macromolecular Bioscience, 15(5), 622-635. doi:10.1002/mabi.201400463
  • Soares, J. C., Moreira, P. R., Queiroga, A. C., Morgado, J., Malcata, F. X., & Pintado, M. E. (2011). Application of immobilized enzyme technologies for the textile industry: A review. Biocatalysis and Biotransformation, 29(6), 223-237. doi:10.3109/10242422.2011.635301
  • Sun, B., Hong, W., Thibau, E. S., Aziz, H., Lu, Z. H., & Li, Y. (2015). Polyethylenimine (PEI) As an effective dopant to conveniently convert Ambipolar and p-Type Polymers into Unipolar n-Type Polymers. ACS Applied Materials and Interfaces, 7(33), 18662-18671. doi:10.1021/acsami.5b05097
  • Tocco, D., Carucci, C., Todde, D., Shortall, K., Otero, F., Sanjust, E., Magner, E., & Salis, A. (2021). Enzyme immobilization on metal organic frameworks: Laccase from Aspergillus sp. is better adapted to ZIF-zni rather than Fe-BTC. Colloids and Surfaces B: Biointerfaces, 208, 112147. doi:10.1016/J.COLSURFB.2021.112147
  • Virgen-Ortíz, J. J., Dos Santos, J. C. S., Berenguer-Murcia, Á., Barbosa, O., Rodrigues, R. C., & Fernandez-Lafuente, R. (2017). Polyethylenimine: A very useful ionic polymer in the design of immobilized enzyme biocatalysts. Journal of Materials Chemistry B, 5(36), 7461-7490. doi:10.1039/c7tb01639e
  • Wang, X., He, L., Huang, J., & Zhong, N. (2021). Immobilization of lipases onto the halogen & haloalkanes modified SBA-15: Enzymatic activity and glycerolysis performance study. International Journal of Biological Macromolecules, 169, 239-250. doi:10.1016/J.IJBIOMAC.2020.12.111
  • Widmann, M., Juhl, B., & Pleiss, J. (2010). Structural classification by the Lipase Engineering Database: a case study of Candida antarctica lipase A structures and a set of analysis tools including phylogenetic trees and HMM profiles. BMC Genomics, 19(11), 123. doi:10.1186/1471-2164-11-123.
  • Wu, P., Zhang, M., Zhang, Y., Wang, Z., & Zheng, J. (2020). A novel lipase from Aspergillus oryzae catalyzed resolution of (R,S)-ethyl 2-bromoisovalerate. Chirality, 32(2), 231-238. doi:10.1002/CHIR.23160
  • Wu, S., Zhang, P., Sun, B., Wu, Y., Huang, M., Luo, Z., Ma, Y., & Tang, K. (2023). Polyethyleneimine-MOF composite as a support for immobilization of lipase with enhanced activity in kinetic resolution. Applied Catalysis A: General, 661(April), 119232. doi:10.1016/j.apcata.2023.119232
  • Zhou, W., Zhou, X., Zhuang, W., Lin, R., Zhao, Y., Ge, L., ..., & Ying, H. (2021). Toward controlled geometric structure and surface property heterogeneities of TiO2 for lipase immobilization. Process Biochemistry, 110, 118-128. doi:10.1016/J.PROCBIO.2021.08.004
There are 42 citations in total.

Details

Primary Language English
Subjects Food Biotechnology
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

Eda Ondul Koc 0000-0002-1659-0813

Mert Yılmaz 0009-0000-1973-9153

Project Number 2015-MIM-B110
Publication Date April 30, 2024
Submission Date June 23, 2023
Published in Issue Year 2024 Volume: 29 Issue: 1

Cite

APA Ondul Koc, E., & Yılmaz, M. (2024). Investigation of Complexing Properties with Polyethyleneimine of Some Commercial Lipases. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1), 189-199. https://doi.org/10.53433/yyufbed.1319182