Research Article
BibTex RIS Cite

Arbutus unedo L. (Ericaceae) Kök Ham Ekstresinin ve Çözücü Fraksiyonlarının İn Vitro α-Glikosidaz, α-Amilaz İnhibitör ve Antioksidan Aktiviteleri

Year 2024, Volume: 29 Issue: 1, 53 - 61, 30.04.2024
https://doi.org/10.53433/yyufbed.1365174

Abstract

Arbutus unedo (Ericaceae) kökleri bazı ülkelerde geleneksel olarak diyabet tedavisinde kullanılmaktadır. Ancak bu bitkinin potansiyel antidiyabetik özelliklerini desteklemek için daha fazla çalışmalara ihtiyaç vardır. Soğuk maserasyonla elde edilen etanolik ekstreden, heksan, kloroform, etil asetat, bütanol ve sulu fraksiyonlar elde edilmiştir. Toplam fenolik içerik ve sırasıyla 2,2-difenil-1-pikrilhidrazil (DPPH), 2,2-azino-bis-3-etilbenzotiyazolin-6-sülfonik asit (ABTS) ve ferrik iyon indirgeyici antioksidan güç (FRAP) tahlil modelleri kullanılarak antioksidan kapasite değerlendirilmiştir. A. unedo ekstrelerinin antidiyabetik aktivitesi, in vitro α-glukosidaz, α-amilaz inhibisyon aktivitesi kullanılarak değerlendirilmiştir. Kullanılan ekstreler arasında etanol ekstresi en yüksek antioksidan aktiviteye sahiptir. Hem α-glukosidaz hem de α-amilaz enzim inhibisyon aktivitesinin sonuçları doza bağlı olarak bulunurken, standart Akarbozla karşılaştırıldığında α-glukosidaz ve α-amilaz için en güçlü inhibisyon aktivitesi etanol ekstresi ile gösterilmiştir (sırasıyla 526,65 ve 522,66 µg mL-1). Sonuçlar A. unedo ekstrelerinin antioksidan ve antidiyabetik aktiviteler göstererek faydalı etkilerini ortaya koymuştur.

References

  • Akuodor, G. C., Idris-Usman, M., Anyalewechi, N., Odo, E., Ugwu, C. T., Akpan, J. L., Gwotmut, M. D., & Osunkwo, U. A. (2010). In vivo antimalarial activity of ethanolic leaf extract of Verbena hastata against Plasmodium berghei berghei in mice. Journal of Herbal Medicine and Toxicology, 4, 17-23.
  • American Diabetes Association. (2008). Standards of medical care in diabetes. Diabetes Care, 31(1), S12-S54. doi:10.2337/dc08-S012
  • Babbar, N., Oberoi, H. S., Uppal, D. S., & Patil, R. T. (2011). Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Research International, 44(1), 391-396. doi:10.1016/j.foodres.2010.10.001
  • Baytop, T. (1999). Curing with Plants in Turkey, in the Past and Today (Türkiye’de Bitkiler ile Tedavi, Geçmişte ve Bugün). Capa, İstanbul: Nobel Medical Books.
  • Bebek Markovinović, A., Brčić Karačonji, I., Jurica, K., Lasić, D., Skendrović Babojelić, M., Duralija, B., ..., & Bursać Kovačević, D. (2022). Strawberry tree fruits and leaves (Arbutus unedo L.) as raw material for sustainable functional food processing: A review. Horticulturae, 8(10), 881. doi:10.3390/horticulturae8100881
  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70-76. doi:10.1006/abio.1996.0292
  • Boivin, D., Lamy, S., Lord-Dufour, S., Jackson, J., Beaulieu, E., Côté, M., ..., & Béliveau, R. (2009). Antiproliferative and antioxidant activities of common vegetables: A comparative study. Food Chemistry, 112(2), 374-380. doi:10.1016/j.foodchem.2008.05.084
  • Bonnefont-Rousselot, D. (2002). Glucose and reactive oxygen species. Current Opinion in Clinical Nutrition & Metabolic Care, 5(5), 561-568. doi:10.1097/00075197-200209000-00016
  • Buzgaia, N., Lee, S. Y., Rukayadi, Y., Abas, F., & Shaari, K. (2021). Antioxidant activity, α-glucosidase inhibition and UHPLC–ESI–MS/MS profile of shmar (Arbutus pavarii Pamp). Plants, 10(8), 1659. doi:10.3390/plants10081659
  • Dib, M. E. A., Allali, H., Bendiabdellah, A., Meliani, N., & Tabti, B. (2013). Antimicrobial activity and phytochemical screening of Arbutus unedo L. Journal of Saudi Chemical Society, 17(4), 381-385. doi:10.1016/j.jscs.2011.05.001
  • Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., & Mérillon, J.-M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774. doi:10.1021/jf803011r
  • El Haouari, M., Assem, N., Changan, S., Kumar, M., Daştan, S. D., Rajkovic, J., Taheri, Y., & Sharifi-Rad, J. (2021). An insight into phytochemical, pharmacological, and nutritional properties of Arbutus unedo L. from Morocco. Evidence-Based Complementary and Alternative Medicine, 2021, 1794621. doi:10.1155/2021/1794621
  • El-Shemy, H. A., Aboul-Soud, M. A. M., Nassr-Allah, A. A., Aboul-Enein, K. M., Kabash, A., & Yagi, A. (2010). Antitumor properties and modulation of antioxidant enzymes’ activity by Aloe vera leaf active principles isolated via supercritical carbon dioxide extraction. Current Medicinal Chemistry, 17(2), 129-138. doi:10.2174/092986710790112620
  • Fidan, A. F., Kucukkurt, I., Yuksel, H., Ozdemir, A., Ince, S., & Dundar, Y. (2009). The effects of structurally different saponin containing plants on tissue antioxidant defense systems, lipid peroxidation and histopathological changes in streptozotocin-induced diabetic rats. Journal of Animal and Veterinary Advances, 8(5), 920-927.
  • Halliwell, B., & Gutteridge, J. M. (2015). Free Radicals in Biology and Medicine. USA: Oxford University Press. doi:10.1093/acprof:oso/9780198717478.001.0001
  • Harborne, A. J. (1998). Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. 3rd Edition. Springer Science & Business Media.
  • Hossain, M. A., Al-Hdhrami, S. S., Weli, A. M., Al-Riyami, Q., & Al-Sabahi, J. N. (2014). Isolation, fractionation and identification of chemical constituents from the leaves crude extracts of Mentha piperita L grown in Sultanate of Oman. Asian Pacific Journal of Tropical Biomedicine, 4, S368-S372. doi:10.12980/APJTB.4.2014C1051
  • Huneif, M. A., Alshehri, D. B., Alshaibari, K. S., Dammaj, M. Z., Mahnashi, M. H., Majid, S. U., ..., & Sadiq, A. (2022). Design, synthesis and bioevaluation of new vanillin hybrid as multitarget inhibitor of α-glucosidase, α-amylase, PTP-1B and DPP4 for the treatment of type-II diabetes. Biomedicine and Pharmacotherapy, 150, 113038. doi:10.1016/j.biopha.2022.113038
  • Jung, M., Park, M., Lee, H. C., Kang, Y.-H., Kang, E. S., & Kim, S. K. (2006). Antidiabetic agents from medicinal plants. Current Medicinal Chemistry, 13(10), 1203-1218. doi:10.2174/092986706776360860
  • Koyu, H., Koyu, E. B., Demir, S., & Baykan, Ş. (2019). Arbutus unedo L. (Kocayemiş). Türk Farmakope Dergisi, 4(3), 29-51.
  • Lee, J., Noh, S., Lim, S., & Kim, B. (2021). Plant extracts for type 2 diabetes: From traditional medicine to modern drug discovery. Antioxidants, 10(1), 81. doi:10.3390/antiox10010081
  • Macchioni, V., Santarelli, V., & Carbone, K. (2020). Phytochemical profile, antiradical capacity and α-glucosidase inhibitory potential of wild Arbutus unedo L. fruits from Central Italy: A chemometric approach. Plants, 9(12), 1785. doi:10.3390/plants9121785
  • Morales, D. (2022). Use of strawberry tree (Arbutus unedo) as a source of functional fractions with biological activities. Foods, 11(23), 3838. doi:10.3390/foods11233838
  • Mrabti, H. N., Jaradat, N., Fichtali, I., Ouedrhiri, W., Jodeh, S., Ayesh, S., Cherrah, Y., & Faouzi, M. E. A. (2018). Separation, identification, and antidiabetic activity of catechin isolated from Arbutus unedo L. plant roots. Plants, 7(2), 31. doi:10.3390/plants7020031
  • Mrabti, H. N., Bouyahya, A., Ed-Dra, A., Kachmar, M. R., Mrabti, N. N., Benali, T., ..., & Faouzi, M. E. A. (2021). Polyphenolic profile and biological properties of Arbutus unedo root extracts. European Journal of Integrative Medicine, 42, 101266. doi:10.1016/j.eujim.2020.101266
  • Okumuş, E. (2023). Effect of different drying processes on antioxidant and antidiabetic properties of Pomegranate press wastes. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 113-120. doi:10.53433/yyufbed.1134273
  • Oliveira, I., Coelho, V., Baltasar, R., Pereira, J. A., & Baptista, P. (2009). Scavenging capacity of strawberry tree (Arbutus unedo L.) leaves on free radicals. Food and Chemical Toxicology, 47(7), 1507-1511. doi:10.1016/j.fct.2009.03.042
  • Oyeniran, O. H., Ademiluyi, A. O., & Oboh, G. (2020). Phenolic constituents and inhibitory effects of the leaf of Rauvolfia vomitoria Afzel on free radicals, cholinergic and monoaminergic enzymes in rat’s brain in vitro. Journal of Basic and Clinical Physiology and Pharmacology, 32(5), 987-994. doi:10.1515/jbcpp-2020-0144
  • Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., & Núñez, M. J. (2005). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry, 53(6), 2111-2117. doi:10.1021/jf0488110
  • POWO. (2023). Plants of the World Online. http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30008667-2
  • Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., ..., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Research and Clinical Practice, 157, 107843. doi:10.1016/j.diabres.2019.107843
  • Shabab, S., Gholamnezhad, Z., & Mahmoudabady, M. (2021). Protective effects of medicinal plant against diabetes induced cardiac disorder: A review. Journal of Ethnopharmacology, 265, 113328. doi:10.1016/j.jep.2020.113328
  • Siddhuraju, P., & Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry, 51(8), 2144-2155. doi:10.1021/jf020444+
  • Şahin, S., Işık, E., Aybastıer, Ö., & Demir, C. (2012). Orthogonal signal correction-based prediction of total antioxidant activity using partial least squares regression from chromatograms. Journal of Chemometrics, 26(7), 390-399. doi:10.1002/cem.2450
  • Telagari, M., & Hullatti, K. (2015). In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian Journal of Pharmacology, 47(4), 425-429. doi:10.4103/0253-7613.161270
  • Tenuta, M. C., Deguin, B., Loizzo, M. R., Dugay, A., Acquaviva, R., Malfa, G. A., …, & Tundis, R. (2020). Contribution of flavonoids and iridoids to the hypoglycaemic, antioxidant, and nitric oxide (NO) inhibitory activities of Arbutus unedo L. Antioxidants, 9(2), 184. doi:10.3390/antiox9020184
  • Tenuta, M. C., Tundis, R., Xiao, J., Loizzo, M. R., Dugay, A., & Deguin, B. (2019). Arbutus species (Ericaceae) as source of valuable bioactive products. Critical Reviews in Food Science and Nutrition, 59(6), 864-881. doi:10.1080/10408398.2018.1551777
  • Tyler, V. E. (1993). Phytomedicines in Western Europe: Potential Impact on Herbal Medicine in the United States. ACS Publications.
  • Zhao, C., Yang, C., Liu, B., Lin, L., Sarker, S. D., Nahar, L., Yu, H., Cao, H., & Xiao, J. (2018). Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends in Food Science & Technology, 72, 1-12. doi:10.1016/j.tifs.2017.12.001
  • Zhou, K., Su, L., & Yu, L. (2004). Phytochemicals and antioxidant properties in wheat bran. Journal of Agricultural and Food Chemistry, 52(20), 6108-6114. doi:10.1021/jf049214g
  • Zhu, Y., & Zhang, C. (2016). Prevalence of gestational diabetes and risk of progression to type 2 diabetes: a global perspective. Current Diabetes Reports, 16, 1-11. doi:10.1007/s11892-015-0699-x

In Vitro α-Glucosidase, α-Amylase Inhibitory and Antioxidant Activities of Root Crude Extract and Solvent Fractions of Arbutus unedo L. (Ericaceae)

Year 2024, Volume: 29 Issue: 1, 53 - 61, 30.04.2024
https://doi.org/10.53433/yyufbed.1365174

Abstract

Roots of Arbutus unedo (Ericaceae) have been used traditionally to treat diabetes in some countries. Conducting more experiments is needed to support this plant's potential antidiabetic properties, though. Ethanolic extract yielded by cold maceration was subjected into fractionation to get hexane, chloroform, ethyl acetate, butanol, and aqueous fractions. Total phenolic contents and antioxidant capacity have been estimated utilizing 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric ion reducing antioxidant potential (FRAP) assay models, respectively. Antidiabetic activity of A. unedo extracts were evaluated using in vitro α-glucosidase, α-amylase inhibition activity. The ethanol extract had the highest antioxidant activity among used extracts. While the results of both α-glucosidase, α-amylase enzyme inhibition activity was detected to be dose-dependent, the strongest inhibition activity for α-glucosidase and α-amylase was shown by ethanol extract (526.65 and 522.66 µg mL-1 respectively) compared to the standard acarbose. Results demonstrated the beneficial effects of A. unedo extracts by showing antioxidant and antidiabetic activities.

Ethical Statement

No particular ethical approval was necessary for this study.

References

  • Akuodor, G. C., Idris-Usman, M., Anyalewechi, N., Odo, E., Ugwu, C. T., Akpan, J. L., Gwotmut, M. D., & Osunkwo, U. A. (2010). In vivo antimalarial activity of ethanolic leaf extract of Verbena hastata against Plasmodium berghei berghei in mice. Journal of Herbal Medicine and Toxicology, 4, 17-23.
  • American Diabetes Association. (2008). Standards of medical care in diabetes. Diabetes Care, 31(1), S12-S54. doi:10.2337/dc08-S012
  • Babbar, N., Oberoi, H. S., Uppal, D. S., & Patil, R. T. (2011). Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Research International, 44(1), 391-396. doi:10.1016/j.foodres.2010.10.001
  • Baytop, T. (1999). Curing with Plants in Turkey, in the Past and Today (Türkiye’de Bitkiler ile Tedavi, Geçmişte ve Bugün). Capa, İstanbul: Nobel Medical Books.
  • Bebek Markovinović, A., Brčić Karačonji, I., Jurica, K., Lasić, D., Skendrović Babojelić, M., Duralija, B., ..., & Bursać Kovačević, D. (2022). Strawberry tree fruits and leaves (Arbutus unedo L.) as raw material for sustainable functional food processing: A review. Horticulturae, 8(10), 881. doi:10.3390/horticulturae8100881
  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70-76. doi:10.1006/abio.1996.0292
  • Boivin, D., Lamy, S., Lord-Dufour, S., Jackson, J., Beaulieu, E., Côté, M., ..., & Béliveau, R. (2009). Antiproliferative and antioxidant activities of common vegetables: A comparative study. Food Chemistry, 112(2), 374-380. doi:10.1016/j.foodchem.2008.05.084
  • Bonnefont-Rousselot, D. (2002). Glucose and reactive oxygen species. Current Opinion in Clinical Nutrition & Metabolic Care, 5(5), 561-568. doi:10.1097/00075197-200209000-00016
  • Buzgaia, N., Lee, S. Y., Rukayadi, Y., Abas, F., & Shaari, K. (2021). Antioxidant activity, α-glucosidase inhibition and UHPLC–ESI–MS/MS profile of shmar (Arbutus pavarii Pamp). Plants, 10(8), 1659. doi:10.3390/plants10081659
  • Dib, M. E. A., Allali, H., Bendiabdellah, A., Meliani, N., & Tabti, B. (2013). Antimicrobial activity and phytochemical screening of Arbutus unedo L. Journal of Saudi Chemical Society, 17(4), 381-385. doi:10.1016/j.jscs.2011.05.001
  • Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., & Mérillon, J.-M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774. doi:10.1021/jf803011r
  • El Haouari, M., Assem, N., Changan, S., Kumar, M., Daştan, S. D., Rajkovic, J., Taheri, Y., & Sharifi-Rad, J. (2021). An insight into phytochemical, pharmacological, and nutritional properties of Arbutus unedo L. from Morocco. Evidence-Based Complementary and Alternative Medicine, 2021, 1794621. doi:10.1155/2021/1794621
  • El-Shemy, H. A., Aboul-Soud, M. A. M., Nassr-Allah, A. A., Aboul-Enein, K. M., Kabash, A., & Yagi, A. (2010). Antitumor properties and modulation of antioxidant enzymes’ activity by Aloe vera leaf active principles isolated via supercritical carbon dioxide extraction. Current Medicinal Chemistry, 17(2), 129-138. doi:10.2174/092986710790112620
  • Fidan, A. F., Kucukkurt, I., Yuksel, H., Ozdemir, A., Ince, S., & Dundar, Y. (2009). The effects of structurally different saponin containing plants on tissue antioxidant defense systems, lipid peroxidation and histopathological changes in streptozotocin-induced diabetic rats. Journal of Animal and Veterinary Advances, 8(5), 920-927.
  • Halliwell, B., & Gutteridge, J. M. (2015). Free Radicals in Biology and Medicine. USA: Oxford University Press. doi:10.1093/acprof:oso/9780198717478.001.0001
  • Harborne, A. J. (1998). Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. 3rd Edition. Springer Science & Business Media.
  • Hossain, M. A., Al-Hdhrami, S. S., Weli, A. M., Al-Riyami, Q., & Al-Sabahi, J. N. (2014). Isolation, fractionation and identification of chemical constituents from the leaves crude extracts of Mentha piperita L grown in Sultanate of Oman. Asian Pacific Journal of Tropical Biomedicine, 4, S368-S372. doi:10.12980/APJTB.4.2014C1051
  • Huneif, M. A., Alshehri, D. B., Alshaibari, K. S., Dammaj, M. Z., Mahnashi, M. H., Majid, S. U., ..., & Sadiq, A. (2022). Design, synthesis and bioevaluation of new vanillin hybrid as multitarget inhibitor of α-glucosidase, α-amylase, PTP-1B and DPP4 for the treatment of type-II diabetes. Biomedicine and Pharmacotherapy, 150, 113038. doi:10.1016/j.biopha.2022.113038
  • Jung, M., Park, M., Lee, H. C., Kang, Y.-H., Kang, E. S., & Kim, S. K. (2006). Antidiabetic agents from medicinal plants. Current Medicinal Chemistry, 13(10), 1203-1218. doi:10.2174/092986706776360860
  • Koyu, H., Koyu, E. B., Demir, S., & Baykan, Ş. (2019). Arbutus unedo L. (Kocayemiş). Türk Farmakope Dergisi, 4(3), 29-51.
  • Lee, J., Noh, S., Lim, S., & Kim, B. (2021). Plant extracts for type 2 diabetes: From traditional medicine to modern drug discovery. Antioxidants, 10(1), 81. doi:10.3390/antiox10010081
  • Macchioni, V., Santarelli, V., & Carbone, K. (2020). Phytochemical profile, antiradical capacity and α-glucosidase inhibitory potential of wild Arbutus unedo L. fruits from Central Italy: A chemometric approach. Plants, 9(12), 1785. doi:10.3390/plants9121785
  • Morales, D. (2022). Use of strawberry tree (Arbutus unedo) as a source of functional fractions with biological activities. Foods, 11(23), 3838. doi:10.3390/foods11233838
  • Mrabti, H. N., Jaradat, N., Fichtali, I., Ouedrhiri, W., Jodeh, S., Ayesh, S., Cherrah, Y., & Faouzi, M. E. A. (2018). Separation, identification, and antidiabetic activity of catechin isolated from Arbutus unedo L. plant roots. Plants, 7(2), 31. doi:10.3390/plants7020031
  • Mrabti, H. N., Bouyahya, A., Ed-Dra, A., Kachmar, M. R., Mrabti, N. N., Benali, T., ..., & Faouzi, M. E. A. (2021). Polyphenolic profile and biological properties of Arbutus unedo root extracts. European Journal of Integrative Medicine, 42, 101266. doi:10.1016/j.eujim.2020.101266
  • Okumuş, E. (2023). Effect of different drying processes on antioxidant and antidiabetic properties of Pomegranate press wastes. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 113-120. doi:10.53433/yyufbed.1134273
  • Oliveira, I., Coelho, V., Baltasar, R., Pereira, J. A., & Baptista, P. (2009). Scavenging capacity of strawberry tree (Arbutus unedo L.) leaves on free radicals. Food and Chemical Toxicology, 47(7), 1507-1511. doi:10.1016/j.fct.2009.03.042
  • Oyeniran, O. H., Ademiluyi, A. O., & Oboh, G. (2020). Phenolic constituents and inhibitory effects of the leaf of Rauvolfia vomitoria Afzel on free radicals, cholinergic and monoaminergic enzymes in rat’s brain in vitro. Journal of Basic and Clinical Physiology and Pharmacology, 32(5), 987-994. doi:10.1515/jbcpp-2020-0144
  • Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., & Núñez, M. J. (2005). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry, 53(6), 2111-2117. doi:10.1021/jf0488110
  • POWO. (2023). Plants of the World Online. http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30008667-2
  • Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., ..., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Research and Clinical Practice, 157, 107843. doi:10.1016/j.diabres.2019.107843
  • Shabab, S., Gholamnezhad, Z., & Mahmoudabady, M. (2021). Protective effects of medicinal plant against diabetes induced cardiac disorder: A review. Journal of Ethnopharmacology, 265, 113328. doi:10.1016/j.jep.2020.113328
  • Siddhuraju, P., & Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry, 51(8), 2144-2155. doi:10.1021/jf020444+
  • Şahin, S., Işık, E., Aybastıer, Ö., & Demir, C. (2012). Orthogonal signal correction-based prediction of total antioxidant activity using partial least squares regression from chromatograms. Journal of Chemometrics, 26(7), 390-399. doi:10.1002/cem.2450
  • Telagari, M., & Hullatti, K. (2015). In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian Journal of Pharmacology, 47(4), 425-429. doi:10.4103/0253-7613.161270
  • Tenuta, M. C., Deguin, B., Loizzo, M. R., Dugay, A., Acquaviva, R., Malfa, G. A., …, & Tundis, R. (2020). Contribution of flavonoids and iridoids to the hypoglycaemic, antioxidant, and nitric oxide (NO) inhibitory activities of Arbutus unedo L. Antioxidants, 9(2), 184. doi:10.3390/antiox9020184
  • Tenuta, M. C., Tundis, R., Xiao, J., Loizzo, M. R., Dugay, A., & Deguin, B. (2019). Arbutus species (Ericaceae) as source of valuable bioactive products. Critical Reviews in Food Science and Nutrition, 59(6), 864-881. doi:10.1080/10408398.2018.1551777
  • Tyler, V. E. (1993). Phytomedicines in Western Europe: Potential Impact on Herbal Medicine in the United States. ACS Publications.
  • Zhao, C., Yang, C., Liu, B., Lin, L., Sarker, S. D., Nahar, L., Yu, H., Cao, H., & Xiao, J. (2018). Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends in Food Science & Technology, 72, 1-12. doi:10.1016/j.tifs.2017.12.001
  • Zhou, K., Su, L., & Yu, L. (2004). Phytochemicals and antioxidant properties in wheat bran. Journal of Agricultural and Food Chemistry, 52(20), 6108-6114. doi:10.1021/jf049214g
  • Zhu, Y., & Zhang, C. (2016). Prevalence of gestational diabetes and risk of progression to type 2 diabetes: a global perspective. Current Diabetes Reports, 16, 1-11. doi:10.1007/s11892-015-0699-x
There are 41 citations in total.

Details

Primary Language English
Subjects Botany (Other), Medicinal and Aromatic Plants
Journal Section Natural Sciences and Mathematics / Fen Bilimleri ve Matematik
Authors

Ahmet Beyatli 0000-0001-5225-6217

Publication Date April 30, 2024
Submission Date September 23, 2023
Published in Issue Year 2024 Volume: 29 Issue: 1

Cite

APA Beyatli, A. (2024). In Vitro α-Glucosidase, α-Amylase Inhibitory and Antioxidant Activities of Root Crude Extract and Solvent Fractions of Arbutus unedo L. (Ericaceae). Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1), 53-61. https://doi.org/10.53433/yyufbed.1365174