Review
BibTex RIS Cite

Mathematical Modeling and Thermodynamic Assessment in Solid-Liquid Extraction

Year 2024, Volume: 29 Issue: 3, 1036 - 1051, 31.12.2024
https://doi.org/10.53433/yyufbed.1447518

Abstract

Solvent extraction is a simple yet effective technique commonly used in the food industry. It has recently been preferred, especially in processing food waste, creating value-added products, preventing environmental pollution and efficient use of biological resources. In solvent extraction, different parameters depending on the extract, raw materials used, solvent and their mixtures, a ratio of solvent to raw material, temperature and raw material characteristics stand out as the most emphasized and studied parameters. In this review study, the effect of the mentioned above on extraction yield and recent studies on mathematical modelling of extraction are generally evaluated. In addition, solid-liquid extraction is examined thermodynamically. It is essential to increase efficiency in solvent extraction, minimize variations, and reduce costs and possible difficulties encountered in production. Therefore, mathematical modeling and thermodynamic evaluation are crucial tools to increase the product’s yield and quality, explain physical and chemical events that occurred in the extraction process, and most, importantly, provide predictability for the process.

References

  • Ahmad, A. L., Yasin, N. M., Derek, C. J. C., & Lim, J. K. (2014). Kinetic studies and thermodynamics of oil extraction and transesterification of Chlorella sp. for biodiesel production. Environmental Technology, 35(7), 891-897. https://doi.org/10.1080/09593330.2013.855263
  • Agu, C. M., Menkiti, M. C., Ohale, P. E., & Ugonabo, V. I. (2020). Extraction modeling, kinetics, and thermodynamics of solvent extraction of Irvingia gabonensis kernel oil for possible industrial application. Engineering Reports, 3(4), 12306. https://doi.org/10.1002/eng2.12306
  • Amanullah, M. F., Rasamani, P., & Sukumar, M. (2024). Process kinetics optimization for extraction of essential oil from the peel of Citrus sinensis for the development of food packaging film. Journal of Food Process Engineering, 47(4), e14613. https://doi.org/10.1111/jfpe.14613
  • Aranha, A. C. R., de Matos Jorge, L. M., Nardino, D. A., Sipoli, C. C., Suzuki, R. M., Tonin, L. T. D., & Defendi, R. O. (2021). Modelling of bioactive components extraction from corn seeds. Chemical Engineering Research and Design, 175, 339–347. https://doi.org/10.1016/j.cherd.2021.09.021
  • Barrientos‐Lezcano, J. C., Gallo‐Machado, J., Marin‐Palacio, L. D., & Builes, S. (2023). Extraction kinetics and physicochemical characteristics of Colombian propolis. Journal of Food Process Engineering, 46(11), e14272. https://doi.org/10.1111/jfpe.14272
  • Bucic-Kojic, A., Planinic, M., Tomas, S., Bilic, M., & Velic, D. (2007). Study of solid–liquid extraction kinetics of total polyphenols from grape seeds. Journal of Food Engineering, 81(1), 236-242. https://doi.org/10.1016/j.jfoodeng.2006.10.027
  • Büyüktuncel, E. (2012). Gelişmiş ekstraksiyon teknikleri I. Hacettepe University Journal of the Faculty of Pharmacy, (2), 209-242.
  • Cacace, J. E., & Mazza, G. (2003). Mass transfer process during extraction of phenolic compounds from milled berries. Journal of Food Engineering, 59(4), 379-389. https://doi.org/10.1016/S0260-8774(02)00497-1
  • Cansu, Ü., & Boran, G. (2015). Optimization of a multi-step procedure for isolation of chicken bone collagen. Korean Journal for Food Science of Animal Resources, 35(4), 431. https://doi.org/10.5851/kosfa.2015.35.4.431
  • Cansu, Ü., & Boran, G. (2022). Kinetic evaluation of gelatin extraction from chicken skin and the effect of some extraction parameters. Journal of Food Process Engineering, 45(4), e13995. https://doi.org/10.1111/jfpe.13995
  • Carcel, J.A., Garcia-Perez, J.V, Mulet, A., Rodriguez, L. & Riera, E. (2010). Ultrasonically assisted antioxidant extraction from grape stalks and olive leaves. Physics Procedia, 3(1), 147 -152. https://doi.org/10.1016/j.phpro.2010.01.021
  • Chan, C. H., Yusoff, R., & Ngoh, G. C. (2014). Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design, 92(6), 1169-1186. https://doi.org/10.1016/j.cherd.2013.10.001
  • Cheung, Y. C., Siu, K. C., & Wu, J. Y. (2012). Kinetic models for ultrasound-assisted extraction of water-soluble components and polysaccharides from medicinal fungi. Food and Bioprocess Technology, 6, 2659–2665. https://doi.org/10.1007/s11947-012-0929-z
  • Chutia, H., & Mahanta, C. L. (2021). Green ultrasound and microwave extraction of carotenoids from passion fruit peel using vegetable oils as a solvent: Optimization, comparison, kinetics, and thermodynamic studies. Innovative Food Science & Emerging Technologies, 67, 102547. https://doi.org/10.1016/j.ifset.2020.102547
  • Cisse, M., Bohuon, P., Sambe, F., Kane, C., Sakho, M., & Dornier, M. (2012). Aqueous extraction of anthocyanins from Hibiscussabdariffa: Experimental kinetics and modeling. Journal of Food Engineering, 109(1), 16–21. https://doi.org/10.1016/j.jfoodeng.2011.10.012
  • Crank, J. (1975). The mathematics of diffusion (2nd ed.). Oxford, UK: Oxford University Press.
  • Da Porto, C., & Natolino, A. (2018). Extraction kinetic modeling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chemistry, 258, 137–143. https://doi.org/10.1016/j.foodchem.2018.03.059
  • Da Silva, H. R. P., Iwassa, I. J., Marques, J., Postaue, N., Stevanato, N., & Da Silva, C. (2020). Enrichment of sunflower oil with β-carotene from carrots: Maximization and thermodynamic parameters of the β-carotene extraction and oil characterization. Journal of Food Processing and Preservation, 44(4), 14399. https://doi.org/10.1111/jfpp.14399
  • Dulo, B., De Somer, T., Moyo, M., Nakyese, E., Githaiga, J., Raes, K., & De Meester, S. (2023). Kinetic modeling of phenolic compounds extraction from nutshells: influence of particle size, temperature and solvent ratio. Biomass Conversion and Biorefinery, 14(19), 23565–23579. https://doi.org/10.1007/s13399-023-04993-1
  • Fernández, M. B., Perez, E. E., Crapiste, G. H., & Nolasco, S. M. (2012). Kinetic study of canola oil and tocopherol extraction: Parameter comparison of nonlinear models. Journal of Food Engineering, 111(4), 682–689. https://doi.org/10.1016/j.jfoodeng.2012.01.036
  • Franco, D., Pinelo, M., Sineiro, J., & Nunez, M. (2007). Processing of Rosa rubiginosa: Extraction of oil and antioxidant substances. Bioresource Technology, 98(18), 3506–3512. https://doi.org/10.1016/j.biortech.2006.11.012
  • Galgano, F., Tolve, R., Scarpa, T., Caruso, M. C., Lucini, L., Senizza, B., & Condelli, N. (2021). Extraction kinetics of total polyphenols, flavonoids, and condensed tannins of lentil seed coat: Comparison of solvent and extraction methods. Foods, 10(8), 1810. https://doi.org/10.3390/foods10081810
  • Golshany, H., Yu, Q., & Fan, L. (2024). Comparative extraction and antioxidant potential of bioactive compounds from Fucus vesiculosus: Kinetic modeling and UPLC-Q-TOF-MS phenolic profiling. Food Bioscience, 57, 103575. https://doi.org/10.1016/j.fbio.2024.103575
  • Herodež, Š. S., Hadolin, M., Škerget, M., & Knez, Ž. (2002). Solvent extraction study of antioxidants from Balm (Melissaofficinalis L.) leaves. Food Chemistry, 80(2), 275–282. https://doi.org/10.1016/s0308-8146(02)00382-5
  • Hobbi, P., Okoro, O. V., Delporte, C., Alimoradi, H., Podstawczyk, D., Nie, L., Bernaerts, K. V., & Shavandi, A. (2021). Kinetic modelling of the solid–liquid extraction process of polyphenolic compounds from apple pomace: influence of solvent composition and temperature. Bioresources and Bioprocessing, 8(1). https://doi.org/10.1186/s40643-021-00465-4
  • Hou, F., Song, S., Yang, S., Wang, Y., Jia, F., & Wang, W. (2024). Study on the Optimization, Extraction Kinetics and Thermodynamics of the Ultrasound-Assisted Enzymatic Extraction of Tremella fuciformis Polysaccharides. Foods, 13(9), 1408. https://doi.org/10.3390/foods13091408
  • Hua, L., Guoqin, H., & Dan, L. (2009). Study of thermodynamic mechanism for using organic solvent to extract isoflavone from soybean residuals. Journal of the Korean Chemical Society, 53(4), 427-431. https://doi.org/10.5012/jkcs.2009.53.4.427
  • Janković, S., Mitić, M., Arsić, B., & Stankov-Jovanović, V. (2020). The kinetic and thermodynamic studies of solid-liquid extraction of apigenin-glycosides from parsley (Petroselinum crispum). Separation Science and Technology, 56(13), 2253–2265. https://doi.org/10.1080/01496395.2020.1821219
  • Kiew, P. L., & Don, M. M. (2013). Screening and empirical kinetic models of collagen extraction from selected Malaysian freshwater fish. Journal of Food Engineering, 36(4), 428–438. https://doi.org/10.1111/j.1745-4530.2012.00683.x
  • Kim, J. Y., Kim, C. L., & Chung, C. H. (2002). Modelling of nucliderelease from low-level radioactive parafin waste: A comparison of simulated and real waste. Journal of Hazardous Materials, 94(2), 161–178. https://doi.org/10.1016/s0304-3894(02)00062-6
  • Li, Y., Obadi, M., Qi, Y., Shi, J., Liu, S., Sun, J., Chen, Z., & Xu, B. (2021). Extraction of oat lipids and phospholipids using subcritical propane and dimethyl ether: experimental data and modeling. European Journal of Lipid Science and Technology, 123(1), 2000092. https://doi.org/10.1002/ejlt.202000092
  • Liu, D., Wei, G., Li, T., Hu, J., Lu, N., Regenstein, J. M., & Zhou, P. (2015). Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp (Ctenopharyngodon idella) skin. Food Chemistry, 172, 836-843. https://doi.org/10.1016/j.foodchem.2014.09.147
  • Mantell, C., Rodriguez, M., & Martinez de la Ossa E. (2002). Semi-batch extraction of anthocyanins from red grape pomace in packed beds: Experimental results and process modeling, Chemical Engineering Science, 57(18), 3831–3838. https://doi.org/10.1016/s0009-2509(02)00320-2
  • Meziane, S., & Kadi, H. (2008). Kinetics and thermodynamics of oil extraction from olive cake. Journal of American Oil Chemists’ Society, 85(4), 391–396. https://doi.org/10.1007/s11746-008-1205-2
  • Nan, G., Gao, Y., Guo, L., Meng, X., & Yang, G. (2018). Solid-liquid extraction of daidzein and genistein from soybean: Kinetic modeling of influential factors. Preparative Biochemistry & Biotechnology, 48(10), 946–953. https://doi.org/10.1080/10826068.2018.1525565
  • Ofori-Boateng, C., & Lee, K. T. (2014). Ultrasonic-assisted extraction of α-tocopherol antioxidants from the fronds of Elaeis guineensis Jacq.: Optimization, kinetics, and thermodynamic studies. Food Analytical Methods, 7(2), 257–267. https://doi.org/10.1007/s12161-013-9619-3
  • Oliveira, E. R., Carvalho, G. R., Cirillo, M. Â., & Queiroz, F. (2019). Effect of ecofriendly bio-based solvents on oil extraction from green coffee bean and its industrial press cake. Brazilian Journal of Chemical Engineering, 36(4), 1739-1753. https://doi.org/10.1590/0104-6632.20190364s20190102
  • Pan, Z., Qu, W., Ma, H., Atungulu, G. G., & McHugh, T. H. (2012). Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrasonics Sonochemistry, 19(2), 365-372. https://doi.org/10.1016/j.ultsonch.2011.05.015
  • Paunović, D. Đ., Mitić, S. S., Kostić, D. A., Mitić, M. N., Stojanović, B. T., & Pavlović, J. L. (2014). Kinetics and thermodynamics of the solid-liquid extraction process of total polyphenols from barley. Savremene Tehnologije, 3(2), 58-63. https://doi.org/10.5937/savteh1402058p
  • Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4), 1216–1217. https://doi.org/10.1111/j.1365-2621.1988.tb13565.x
  • Perez, E. E., Carelli, A. A., & Crapiste, G. H. (2011). Temperature dependent diffusion coefficient of oil from different sunflower seeds during extraction with hexane. Journal of Food Engineering,, 105(1), 180-185. https://doi.org/10.1016/j.jfoodeng.2011.02.025
  • Poojary, M. M., & Passamonti, P. (2015). Extraction of lycopene from tomato processing waste: Kinetics and modelling. Food Chemistry, 173, 943–950. https://doi.org/10.1016/j.foodchem.2014.10.127
  • Price, W. E., & Spitzer, J. C. (1994). The kinetics of extraction of individual flavanols and caffeine from a Japanese green tea (Sen Cha Uji Tsuyu) as a function of temperature. Food Chemistry, 50(1), 19-23. https://doi.org/10.1016/0308-8146(94)90086-8
  • Qu, W., Pan, Z., & Ma, H. (2010). Extraction modeling and activities of antioxidants from pomegranate marc. Journal of Food Engineering, 99(1), 16-23. https://doi.org/10.1016/j.jfoodeng.2010.01.020
  • Rakotondramasy-Rabesiaka, L., Havet, J. L., Porte, C., & Fauduet, H. (2009). Solid–liquid extraction of protopine from Fumaria officinalis L. Kinetic modeling of influential parameters. Industrial Crops and Products, 29(2–3), 516–523. https://doi.org/10.1016/j.indcrop.2008.10.001
  • Rakotondramasy-Rabesiaka, L., Havet, J. L., Porte, C., & Fauduet, H. (2010). Estimation of effective diffusion and transfer rate during the protopine extraction process from Fumaria officinalis L. Separation and Purification Technology, 76(2), 126-131. https://doi.org/10.1016/j.seppur.2010.09.030
  • Saxena, D., Sharma, S., & Sambi, S. (2012). Kinetics and thermodynamics of gossypol extraction from defatted cottonseed meal by ethanol. Polish Journal of Chemical Technology, 14(2), 29-34. https://doi.org/10.2478/v10026-012-0067-4
  • Seikova, I., Simeonov, E., & Ivanova, E. (2004). Protein leaching from tomato seed-experimental kinetics and prediction of effective diffusivity, Journal of Food Engineering, 61(2), 165–171. https://doi.org/10.1016/s0260-8774(03)00083-9
  • Singh, S., Sharma, S. K., & Kansal, S. K. (2020). Extraction of natural pigment gossypol from defatted cottonseed using 2 propanol water green solvent, its kinetics and thermodynamic study. Arabian Journal for Science and Engineering, 45(9), 7539–7550. https://doi.org/10.1007/s13369-020-04665-6
  • So, G. C., & Macdonald, D. G. (1986). Kinetics of oil extraction from Canola (Rapeseed). Canadian Journal of Chemical Engineering, 64(1), 80-86.
  • Spiro, M., & Page, C. M. (1984). The kinetics and mechanism of caffeine infusion from coffee: Hydrodynamic aspects. Journal of the Science of Food and Agriculture, 35, 925–930. https://doi.org/10.1002/jsfa.2740350818
  • Stamenkovic, O. S., Kostic, M. D., Tasic, M. B., Djalovic, I. G., Mitrovic, P. M., Biberdzic, M. O., & Veljkovic, V. B. (2020). Kinetic, thermodynamic and optimization study of the corn germ oil extraction process. Food and Bioproducts Processing, 120, 91–103. https://doi.org/10.1016/j.fbp.2019.12.013
  • Stanisavljević, I. T., Stojičević, S. S., Veličković, D. T., Lazić, M. L., & Veljković, V. B. (2008). Screening the antioxidant and antimicrobial properties of the extracts from plantain (Plantago major L.) leaves. Separation Science and Technology, 43(14), 3652-3662. https://doi.org/10.1080/01496390802219091
  • Sulaiman, S., Abdul Aziz, A. R., & Aroua, M. K. (2013). Optimization and modeling of extraction of solid coconut waste oil. Journal of Food Engineering, 114(2), 228-234. https://doi.org/10.1016/j.jfoodeng.2012.08.025
  • Tijskens, L. M. M., Hertog, M. L. A. T. M., & Nicolai, B. M. (2001). Food process modeling. Abington, UK: Woodhead Publishing.
  • Van Boekel Maj, S. (2000). Kinetic modeling in food science: a case study on chlorophyll degradation in olives. Journal of the Science of Food and Agriculture, 80(1), 3-9. https://doi.org/10.1002/(SICI)1097-0010(20000101)80:1%3C3::AID-JSFA532%3E3.0.CO;2-3
  • Veljkovic, V. & Milenovic, D. (2002). Extraction of resinoids from St. John’s worth (Hypericumperforatum L.) II. Modeling of extraction kinetics. Chemical Industry, 56(2), 60–67. https://doi.org/10.2298/hemind0202060v
  • Winitsorn, A., Douglas, P.L., Douglas, S., Pongampai, S. & Teppeitoon, W. (2008). Modeling the extraction of valuable substances from natural plants using solid–liquid extraction. Chemical Engineering Comminications, 195(11), 1457-1464. https://doi.org/10.1080/00986440801967288
  • Wongkittipong, R., Prat, L., Damronglerd, S., & Gourdon, C. (2004). Solid–liquid extraction of rographolide from plants-experimental study, kinetic reaction and model. Separation and Purification Technology, 40(2), 147-154. https://doi.org/10.1016/j.seppur.2004.02.002
  • Xiao, X., Song, W., Wang, J., & Li, G. (2012). Microwave-assisted extraction performed in low temperature and in vacum for the extraction of labile compounds in food samples. Analytica Chimica Acta, 712, 85-93. https://doi.org/10.1016/j.aca.2011.11.034
  • Zhu, A. (2022). Kinetics and thermodynamics of water extraction of foxtail millet polysaccharides. Iranian Journal of Chemistry and Chemical Engineering, 41(2), 510-520. https://doi.org/10.30492/ijcce.2020.131368.4244

Katı-Sıvı Ekstraksiyonunda Matematiksel Modelleme ve Termodinamik Değerlendirme

Year 2024, Volume: 29 Issue: 3, 1036 - 1051, 31.12.2024
https://doi.org/10.53433/yyufbed.1447518

Abstract

Çözücü ekstraksiyonu gıda endüstrisinde sıkça kullanılan basit ve aynı zamanda etkili bir tekniktir. Son yıllarda özellikle atıkların işlenmesi, ekonomik katma değerin artırılması, çevre kirliliğinin önlenmesi ve biyolojik kaynakların verimli kullanılması için sıklıkla tercih edilen bir uygulamadır. Elde edilmek istenen bileşen ve kullanılan hammaddeye bağlı olarak farklı parametrelerle uygulanan çözücü ekstraksiyonunda, çözücü ve karışımları, çözücü-hammadde oranı, sıcaklık ve hammadde özellikleri en çok üzerinde durulan parametreler olarak ön plana çıkmaktadır. Bu derleme çalışmada, söz konusu parametrelerin katı-sıvı ekstraksiyonunda verim üzerine etkisi ve işlemin matematiksel olarak modellenmesi üzerine yapılan çalışmalar incelenmiştir. Ayrıca katı-sıvı ekstraksiyonu termodinamik yönden de değerlendirilmiştir. Katı-sıvı ekstraksiyonunda verimin artırılması, varyasyonların azaltılması, üretimde karşılaşılan zorlukların ve üretim maliyetinin düşürülmesi önem arz etmektedir. Bu amaçla yapılan modelleme ve termodinamik çalışmalar; farklı ekstraksiyon parametrelerinin son ürünün verim ve kalitesi üzerine etkisini belirlemek, ekstraksiyonda gerçekleşen fiziksel ve kimyasal olayları açıklamak ve en önemlisi prosesin öngörülebilirliğini sağlamak bakımından önemlidir.

References

  • Ahmad, A. L., Yasin, N. M., Derek, C. J. C., & Lim, J. K. (2014). Kinetic studies and thermodynamics of oil extraction and transesterification of Chlorella sp. for biodiesel production. Environmental Technology, 35(7), 891-897. https://doi.org/10.1080/09593330.2013.855263
  • Agu, C. M., Menkiti, M. C., Ohale, P. E., & Ugonabo, V. I. (2020). Extraction modeling, kinetics, and thermodynamics of solvent extraction of Irvingia gabonensis kernel oil for possible industrial application. Engineering Reports, 3(4), 12306. https://doi.org/10.1002/eng2.12306
  • Amanullah, M. F., Rasamani, P., & Sukumar, M. (2024). Process kinetics optimization for extraction of essential oil from the peel of Citrus sinensis for the development of food packaging film. Journal of Food Process Engineering, 47(4), e14613. https://doi.org/10.1111/jfpe.14613
  • Aranha, A. C. R., de Matos Jorge, L. M., Nardino, D. A., Sipoli, C. C., Suzuki, R. M., Tonin, L. T. D., & Defendi, R. O. (2021). Modelling of bioactive components extraction from corn seeds. Chemical Engineering Research and Design, 175, 339–347. https://doi.org/10.1016/j.cherd.2021.09.021
  • Barrientos‐Lezcano, J. C., Gallo‐Machado, J., Marin‐Palacio, L. D., & Builes, S. (2023). Extraction kinetics and physicochemical characteristics of Colombian propolis. Journal of Food Process Engineering, 46(11), e14272. https://doi.org/10.1111/jfpe.14272
  • Bucic-Kojic, A., Planinic, M., Tomas, S., Bilic, M., & Velic, D. (2007). Study of solid–liquid extraction kinetics of total polyphenols from grape seeds. Journal of Food Engineering, 81(1), 236-242. https://doi.org/10.1016/j.jfoodeng.2006.10.027
  • Büyüktuncel, E. (2012). Gelişmiş ekstraksiyon teknikleri I. Hacettepe University Journal of the Faculty of Pharmacy, (2), 209-242.
  • Cacace, J. E., & Mazza, G. (2003). Mass transfer process during extraction of phenolic compounds from milled berries. Journal of Food Engineering, 59(4), 379-389. https://doi.org/10.1016/S0260-8774(02)00497-1
  • Cansu, Ü., & Boran, G. (2015). Optimization of a multi-step procedure for isolation of chicken bone collagen. Korean Journal for Food Science of Animal Resources, 35(4), 431. https://doi.org/10.5851/kosfa.2015.35.4.431
  • Cansu, Ü., & Boran, G. (2022). Kinetic evaluation of gelatin extraction from chicken skin and the effect of some extraction parameters. Journal of Food Process Engineering, 45(4), e13995. https://doi.org/10.1111/jfpe.13995
  • Carcel, J.A., Garcia-Perez, J.V, Mulet, A., Rodriguez, L. & Riera, E. (2010). Ultrasonically assisted antioxidant extraction from grape stalks and olive leaves. Physics Procedia, 3(1), 147 -152. https://doi.org/10.1016/j.phpro.2010.01.021
  • Chan, C. H., Yusoff, R., & Ngoh, G. C. (2014). Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design, 92(6), 1169-1186. https://doi.org/10.1016/j.cherd.2013.10.001
  • Cheung, Y. C., Siu, K. C., & Wu, J. Y. (2012). Kinetic models for ultrasound-assisted extraction of water-soluble components and polysaccharides from medicinal fungi. Food and Bioprocess Technology, 6, 2659–2665. https://doi.org/10.1007/s11947-012-0929-z
  • Chutia, H., & Mahanta, C. L. (2021). Green ultrasound and microwave extraction of carotenoids from passion fruit peel using vegetable oils as a solvent: Optimization, comparison, kinetics, and thermodynamic studies. Innovative Food Science & Emerging Technologies, 67, 102547. https://doi.org/10.1016/j.ifset.2020.102547
  • Cisse, M., Bohuon, P., Sambe, F., Kane, C., Sakho, M., & Dornier, M. (2012). Aqueous extraction of anthocyanins from Hibiscussabdariffa: Experimental kinetics and modeling. Journal of Food Engineering, 109(1), 16–21. https://doi.org/10.1016/j.jfoodeng.2011.10.012
  • Crank, J. (1975). The mathematics of diffusion (2nd ed.). Oxford, UK: Oxford University Press.
  • Da Porto, C., & Natolino, A. (2018). Extraction kinetic modeling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chemistry, 258, 137–143. https://doi.org/10.1016/j.foodchem.2018.03.059
  • Da Silva, H. R. P., Iwassa, I. J., Marques, J., Postaue, N., Stevanato, N., & Da Silva, C. (2020). Enrichment of sunflower oil with β-carotene from carrots: Maximization and thermodynamic parameters of the β-carotene extraction and oil characterization. Journal of Food Processing and Preservation, 44(4), 14399. https://doi.org/10.1111/jfpp.14399
  • Dulo, B., De Somer, T., Moyo, M., Nakyese, E., Githaiga, J., Raes, K., & De Meester, S. (2023). Kinetic modeling of phenolic compounds extraction from nutshells: influence of particle size, temperature and solvent ratio. Biomass Conversion and Biorefinery, 14(19), 23565–23579. https://doi.org/10.1007/s13399-023-04993-1
  • Fernández, M. B., Perez, E. E., Crapiste, G. H., & Nolasco, S. M. (2012). Kinetic study of canola oil and tocopherol extraction: Parameter comparison of nonlinear models. Journal of Food Engineering, 111(4), 682–689. https://doi.org/10.1016/j.jfoodeng.2012.01.036
  • Franco, D., Pinelo, M., Sineiro, J., & Nunez, M. (2007). Processing of Rosa rubiginosa: Extraction of oil and antioxidant substances. Bioresource Technology, 98(18), 3506–3512. https://doi.org/10.1016/j.biortech.2006.11.012
  • Galgano, F., Tolve, R., Scarpa, T., Caruso, M. C., Lucini, L., Senizza, B., & Condelli, N. (2021). Extraction kinetics of total polyphenols, flavonoids, and condensed tannins of lentil seed coat: Comparison of solvent and extraction methods. Foods, 10(8), 1810. https://doi.org/10.3390/foods10081810
  • Golshany, H., Yu, Q., & Fan, L. (2024). Comparative extraction and antioxidant potential of bioactive compounds from Fucus vesiculosus: Kinetic modeling and UPLC-Q-TOF-MS phenolic profiling. Food Bioscience, 57, 103575. https://doi.org/10.1016/j.fbio.2024.103575
  • Herodež, Š. S., Hadolin, M., Škerget, M., & Knez, Ž. (2002). Solvent extraction study of antioxidants from Balm (Melissaofficinalis L.) leaves. Food Chemistry, 80(2), 275–282. https://doi.org/10.1016/s0308-8146(02)00382-5
  • Hobbi, P., Okoro, O. V., Delporte, C., Alimoradi, H., Podstawczyk, D., Nie, L., Bernaerts, K. V., & Shavandi, A. (2021). Kinetic modelling of the solid–liquid extraction process of polyphenolic compounds from apple pomace: influence of solvent composition and temperature. Bioresources and Bioprocessing, 8(1). https://doi.org/10.1186/s40643-021-00465-4
  • Hou, F., Song, S., Yang, S., Wang, Y., Jia, F., & Wang, W. (2024). Study on the Optimization, Extraction Kinetics and Thermodynamics of the Ultrasound-Assisted Enzymatic Extraction of Tremella fuciformis Polysaccharides. Foods, 13(9), 1408. https://doi.org/10.3390/foods13091408
  • Hua, L., Guoqin, H., & Dan, L. (2009). Study of thermodynamic mechanism for using organic solvent to extract isoflavone from soybean residuals. Journal of the Korean Chemical Society, 53(4), 427-431. https://doi.org/10.5012/jkcs.2009.53.4.427
  • Janković, S., Mitić, M., Arsić, B., & Stankov-Jovanović, V. (2020). The kinetic and thermodynamic studies of solid-liquid extraction of apigenin-glycosides from parsley (Petroselinum crispum). Separation Science and Technology, 56(13), 2253–2265. https://doi.org/10.1080/01496395.2020.1821219
  • Kiew, P. L., & Don, M. M. (2013). Screening and empirical kinetic models of collagen extraction from selected Malaysian freshwater fish. Journal of Food Engineering, 36(4), 428–438. https://doi.org/10.1111/j.1745-4530.2012.00683.x
  • Kim, J. Y., Kim, C. L., & Chung, C. H. (2002). Modelling of nucliderelease from low-level radioactive parafin waste: A comparison of simulated and real waste. Journal of Hazardous Materials, 94(2), 161–178. https://doi.org/10.1016/s0304-3894(02)00062-6
  • Li, Y., Obadi, M., Qi, Y., Shi, J., Liu, S., Sun, J., Chen, Z., & Xu, B. (2021). Extraction of oat lipids and phospholipids using subcritical propane and dimethyl ether: experimental data and modeling. European Journal of Lipid Science and Technology, 123(1), 2000092. https://doi.org/10.1002/ejlt.202000092
  • Liu, D., Wei, G., Li, T., Hu, J., Lu, N., Regenstein, J. M., & Zhou, P. (2015). Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp (Ctenopharyngodon idella) skin. Food Chemistry, 172, 836-843. https://doi.org/10.1016/j.foodchem.2014.09.147
  • Mantell, C., Rodriguez, M., & Martinez de la Ossa E. (2002). Semi-batch extraction of anthocyanins from red grape pomace in packed beds: Experimental results and process modeling, Chemical Engineering Science, 57(18), 3831–3838. https://doi.org/10.1016/s0009-2509(02)00320-2
  • Meziane, S., & Kadi, H. (2008). Kinetics and thermodynamics of oil extraction from olive cake. Journal of American Oil Chemists’ Society, 85(4), 391–396. https://doi.org/10.1007/s11746-008-1205-2
  • Nan, G., Gao, Y., Guo, L., Meng, X., & Yang, G. (2018). Solid-liquid extraction of daidzein and genistein from soybean: Kinetic modeling of influential factors. Preparative Biochemistry & Biotechnology, 48(10), 946–953. https://doi.org/10.1080/10826068.2018.1525565
  • Ofori-Boateng, C., & Lee, K. T. (2014). Ultrasonic-assisted extraction of α-tocopherol antioxidants from the fronds of Elaeis guineensis Jacq.: Optimization, kinetics, and thermodynamic studies. Food Analytical Methods, 7(2), 257–267. https://doi.org/10.1007/s12161-013-9619-3
  • Oliveira, E. R., Carvalho, G. R., Cirillo, M. Â., & Queiroz, F. (2019). Effect of ecofriendly bio-based solvents on oil extraction from green coffee bean and its industrial press cake. Brazilian Journal of Chemical Engineering, 36(4), 1739-1753. https://doi.org/10.1590/0104-6632.20190364s20190102
  • Pan, Z., Qu, W., Ma, H., Atungulu, G. G., & McHugh, T. H. (2012). Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrasonics Sonochemistry, 19(2), 365-372. https://doi.org/10.1016/j.ultsonch.2011.05.015
  • Paunović, D. Đ., Mitić, S. S., Kostić, D. A., Mitić, M. N., Stojanović, B. T., & Pavlović, J. L. (2014). Kinetics and thermodynamics of the solid-liquid extraction process of total polyphenols from barley. Savremene Tehnologije, 3(2), 58-63. https://doi.org/10.5937/savteh1402058p
  • Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4), 1216–1217. https://doi.org/10.1111/j.1365-2621.1988.tb13565.x
  • Perez, E. E., Carelli, A. A., & Crapiste, G. H. (2011). Temperature dependent diffusion coefficient of oil from different sunflower seeds during extraction with hexane. Journal of Food Engineering,, 105(1), 180-185. https://doi.org/10.1016/j.jfoodeng.2011.02.025
  • Poojary, M. M., & Passamonti, P. (2015). Extraction of lycopene from tomato processing waste: Kinetics and modelling. Food Chemistry, 173, 943–950. https://doi.org/10.1016/j.foodchem.2014.10.127
  • Price, W. E., & Spitzer, J. C. (1994). The kinetics of extraction of individual flavanols and caffeine from a Japanese green tea (Sen Cha Uji Tsuyu) as a function of temperature. Food Chemistry, 50(1), 19-23. https://doi.org/10.1016/0308-8146(94)90086-8
  • Qu, W., Pan, Z., & Ma, H. (2010). Extraction modeling and activities of antioxidants from pomegranate marc. Journal of Food Engineering, 99(1), 16-23. https://doi.org/10.1016/j.jfoodeng.2010.01.020
  • Rakotondramasy-Rabesiaka, L., Havet, J. L., Porte, C., & Fauduet, H. (2009). Solid–liquid extraction of protopine from Fumaria officinalis L. Kinetic modeling of influential parameters. Industrial Crops and Products, 29(2–3), 516–523. https://doi.org/10.1016/j.indcrop.2008.10.001
  • Rakotondramasy-Rabesiaka, L., Havet, J. L., Porte, C., & Fauduet, H. (2010). Estimation of effective diffusion and transfer rate during the protopine extraction process from Fumaria officinalis L. Separation and Purification Technology, 76(2), 126-131. https://doi.org/10.1016/j.seppur.2010.09.030
  • Saxena, D., Sharma, S., & Sambi, S. (2012). Kinetics and thermodynamics of gossypol extraction from defatted cottonseed meal by ethanol. Polish Journal of Chemical Technology, 14(2), 29-34. https://doi.org/10.2478/v10026-012-0067-4
  • Seikova, I., Simeonov, E., & Ivanova, E. (2004). Protein leaching from tomato seed-experimental kinetics and prediction of effective diffusivity, Journal of Food Engineering, 61(2), 165–171. https://doi.org/10.1016/s0260-8774(03)00083-9
  • Singh, S., Sharma, S. K., & Kansal, S. K. (2020). Extraction of natural pigment gossypol from defatted cottonseed using 2 propanol water green solvent, its kinetics and thermodynamic study. Arabian Journal for Science and Engineering, 45(9), 7539–7550. https://doi.org/10.1007/s13369-020-04665-6
  • So, G. C., & Macdonald, D. G. (1986). Kinetics of oil extraction from Canola (Rapeseed). Canadian Journal of Chemical Engineering, 64(1), 80-86.
  • Spiro, M., & Page, C. M. (1984). The kinetics and mechanism of caffeine infusion from coffee: Hydrodynamic aspects. Journal of the Science of Food and Agriculture, 35, 925–930. https://doi.org/10.1002/jsfa.2740350818
  • Stamenkovic, O. S., Kostic, M. D., Tasic, M. B., Djalovic, I. G., Mitrovic, P. M., Biberdzic, M. O., & Veljkovic, V. B. (2020). Kinetic, thermodynamic and optimization study of the corn germ oil extraction process. Food and Bioproducts Processing, 120, 91–103. https://doi.org/10.1016/j.fbp.2019.12.013
  • Stanisavljević, I. T., Stojičević, S. S., Veličković, D. T., Lazić, M. L., & Veljković, V. B. (2008). Screening the antioxidant and antimicrobial properties of the extracts from plantain (Plantago major L.) leaves. Separation Science and Technology, 43(14), 3652-3662. https://doi.org/10.1080/01496390802219091
  • Sulaiman, S., Abdul Aziz, A. R., & Aroua, M. K. (2013). Optimization and modeling of extraction of solid coconut waste oil. Journal of Food Engineering, 114(2), 228-234. https://doi.org/10.1016/j.jfoodeng.2012.08.025
  • Tijskens, L. M. M., Hertog, M. L. A. T. M., & Nicolai, B. M. (2001). Food process modeling. Abington, UK: Woodhead Publishing.
  • Van Boekel Maj, S. (2000). Kinetic modeling in food science: a case study on chlorophyll degradation in olives. Journal of the Science of Food and Agriculture, 80(1), 3-9. https://doi.org/10.1002/(SICI)1097-0010(20000101)80:1%3C3::AID-JSFA532%3E3.0.CO;2-3
  • Veljkovic, V. & Milenovic, D. (2002). Extraction of resinoids from St. John’s worth (Hypericumperforatum L.) II. Modeling of extraction kinetics. Chemical Industry, 56(2), 60–67. https://doi.org/10.2298/hemind0202060v
  • Winitsorn, A., Douglas, P.L., Douglas, S., Pongampai, S. & Teppeitoon, W. (2008). Modeling the extraction of valuable substances from natural plants using solid–liquid extraction. Chemical Engineering Comminications, 195(11), 1457-1464. https://doi.org/10.1080/00986440801967288
  • Wongkittipong, R., Prat, L., Damronglerd, S., & Gourdon, C. (2004). Solid–liquid extraction of rographolide from plants-experimental study, kinetic reaction and model. Separation and Purification Technology, 40(2), 147-154. https://doi.org/10.1016/j.seppur.2004.02.002
  • Xiao, X., Song, W., Wang, J., & Li, G. (2012). Microwave-assisted extraction performed in low temperature and in vacum for the extraction of labile compounds in food samples. Analytica Chimica Acta, 712, 85-93. https://doi.org/10.1016/j.aca.2011.11.034
  • Zhu, A. (2022). Kinetics and thermodynamics of water extraction of foxtail millet polysaccharides. Iranian Journal of Chemistry and Chemical Engineering, 41(2), 510-520. https://doi.org/10.30492/ijcce.2020.131368.4244
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Articles / Derleme Makaleler
Authors

Ümran Cansu 0000-0002-0504-8308

Gökhan Boran 0000-0002-8871-8433

Publication Date December 31, 2024
Submission Date March 5, 2024
Acceptance Date August 29, 2024
Published in Issue Year 2024 Volume: 29 Issue: 3

Cite

APA Cansu, Ü., & Boran, G. (2024). Katı-Sıvı Ekstraksiyonunda Matematiksel Modelleme ve Termodinamik Değerlendirme. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 1036-1051. https://doi.org/10.53433/yyufbed.1447518