Research Article
BibTex RIS Cite

Projektif Variyetinin Bir İzdüşümü İçin Hesaplama Metodu

Year 2024, Volume: 29 Issue: 3, 882 - 889, 31.12.2024
https://doi.org/10.53433/yyufbed.1450739

Abstract

P^n’de bir projektif variyeti W ve bu variyetinin üzerinde olmayan bir p noktası alalım. p noktasından P^(n-1) 'e bir izdüşüm π_p:P^n\{p}→P^(n-1) fonksiyonu ile gösterilir buradaπ_p (q), (pq) ̅ doğrusunun q≠p için P^(n-1)’deki kestiği noktayı ifade etmektedir. Bu makalede, W belirli homojen polinomların sıfır noktalarının kümesi olduğunda, biz I(π_p (W)) ideali için üreteç kümesi bulacağız.

References

  • Cox, D., Little, J., & O'Shea, D. (1996). Ideals, Varieties and Algorithms. New-York: Springer Cham. https://doi.org/10.1007/978-3-319-16721-3
  • Decker, W.; Gruel, G.; Pfister, G. (1999). Primary Decomposition: Algorithms and Comparisons. Algorithms Algebra and Number Theory, 187-220. https://doi.org/10.1007/978-3-642-59932-3_10
  • Greuel, G. M., & Pfister, G. (2008). A Singular Introduction to Commutative Algebra. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73542-7
  • Harris, J. (1992). Algebraic Geometry. New York: Springer New York, NY. https://doi.org/10.1007/978-1-4757-2189-8
  • Kemper, G. (2002). The Calculation of Radical Ideals In Positive Characteristic. J. Symbolic Computation, 34(3), 229-238. https://doi.org/10.1006/jsco.2002.0560

A Computation Method for a Projection of a Projective Variety

Year 2024, Volume: 29 Issue: 3, 882 - 889, 31.12.2024
https://doi.org/10.53433/yyufbed.1450739

Abstract

Consider a projective variety W⊆P^n and a point p∈P^n\W. The projection at point p onto P^(n-1) is represented by the mapping π_p:P^n\{p}→P^(n-1), where π_p (q) denotes the point of intersection between the line (pq) ̅ and P^(n-1), for q≠p. In this article, we derive a generator set for the ideal I(π_p (W)) when W is defined as the set of zero points of certain homogeneous polynomials.

References

  • Cox, D., Little, J., & O'Shea, D. (1996). Ideals, Varieties and Algorithms. New-York: Springer Cham. https://doi.org/10.1007/978-3-319-16721-3
  • Decker, W.; Gruel, G.; Pfister, G. (1999). Primary Decomposition: Algorithms and Comparisons. Algorithms Algebra and Number Theory, 187-220. https://doi.org/10.1007/978-3-642-59932-3_10
  • Greuel, G. M., & Pfister, G. (2008). A Singular Introduction to Commutative Algebra. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73542-7
  • Harris, J. (1992). Algebraic Geometry. New York: Springer New York, NY. https://doi.org/10.1007/978-1-4757-2189-8
  • Kemper, G. (2002). The Calculation of Radical Ideals In Positive Characteristic. J. Symbolic Computation, 34(3), 229-238. https://doi.org/10.1006/jsco.2002.0560
There are 5 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Natural Sciences and Mathematics / Fen Bilimleri ve Matematik
Authors

Uğur Ustaoğlu 0000-0001-7375-0652

Erol Yılmaz 0000-0003-0763-9408

Publication Date December 31, 2024
Submission Date March 11, 2024
Acceptance Date August 26, 2024
Published in Issue Year 2024 Volume: 29 Issue: 3

Cite

APA Ustaoğlu, U., & Yılmaz, E. (2024). A Computation Method for a Projection of a Projective Variety. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 882-889. https://doi.org/10.53433/yyufbed.1450739