Research Article
BibTex RIS Cite

Histopatolojik Görüntülerde Meme Kanseri Sınıflandırması İçin Maliyet Etkin Yeni Bir CNN Modelinin Geliştirilmesi

Year 2024, Volume: 29 Issue: 3, 896 - 912, 31.12.2024
https://doi.org/10.53433/yyufbed.1498736

Abstract

Kanser, hem gelişmiş sanayileşmiş ülkeleri hem de gelişmekte olan ülkeleri etkileyen, dünya çapında hastalık ve ölümün önde gelen nedenlerinden biridir. Özellikle kadınlar arasında meme kanseri, oldukça yaygın ve ciddi bir kanser türüdür ve bu nedenle tıp alanında geniş çaplı araştırmaların odak noktası olmuştur. Meme kanseri teşhisinde histopatolojik görüntüler, içerdiği değerli fenotipik bilgiler nedeniyle kritik bir rol oynar. Meme histopatolojik görüntü analizinin (BHIA) doğruluğunu ve nesnelliğini artırmak amacıyla, bu görüntüler üzerinde sınıflandırma ve tespit görevleri derin öğrenme mimarisi yaklaşımları kullanılarak gerçekleştirilir. Bu makalede, Meme Kanseri Histopatolojik Veritabanı (BreakHis) kullanılarak yapılan ön deneyde, dört son teknoloji ve özel CNN mimarisi önerilmiştir. Deneysel sonuçlar, önerilen özel modelin 40x ve 200x büyütme faktörlerinde kayda değer bir performans sergilediğini ve sırasıyla %97.49 ve %97.77 doğruluklara ulaştığını, diğer modelleri geride bıraktığını göstermektedir. ResNet-50 modeli ise 100x ve 400x büyütme faktörlerinde daha yüksek doğruluk elde etmiş ve sırasıyla %98.56 ve %96.43 doğruluk oranlarına ulaşmıştır. Diğer son teknoloji modellerle karşılaştırıldığında, önerilen CNN modeli sadece çok daha kısa bir süre içinde verimli eğitim göstermekle kalmamış, aynı zamanda daha az katman sayısı ile üstün hesaplama verimliliğine sahip olduğunu göstermiştir. Parametre sayısı bir modelden daha yüksek olmasına rağmen, model hesaplama verimliliği ile model kapasitesi arasında olumlu bir denge kurmaktadır. Elde edilen sonuçlar ve mevcut literatür ışığında, gelecekteki çalışmalar, meme kanseri sınıflandırmasında performans değerlerini artırmak amacıyla daha da geliştirilebilir.

References

  • Addo, D., Zhou, S., Sarpong, K., Nartey, O. T., Abdullah, M. A., Ukwuoma, C. C., & Al-antari, M. A. (2024). A hybrid lightweight breast cancer classification framework using the histopathological images. Biocybernetics and Biomedical Engineering, 44(1), 31-54. https://doi.org/10.1016/j.bbe.2023.12.003
  • Ali, M. S., Miah, M. S., Haque, J., Rahman, M. M., & Islam, M. K. (2021). An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Machine Learning with Applications, 5, 100036. https://doi.org/10.1016/j.mlwa.2021.100036
  • Alom, M. Z., Yakopcic, C., Nasrin, M. S., Taha, T. M., & Asari, V. K. (2019). Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network. Journal of Digital Imaging, 32, 605-617. https://doi.org/10.1007/s10278-019-00182-7
  • Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., Vignat, J., Gralow, J. R., Cardoso, F., & Siesling, S. (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast, 66, 15-23. https://doi.org/10.1016/j.breast.2022.08.010
  • Boumaraf, S., Liu, X., Wan, Y., Zheng, Z., Ferkous, C., Ma, X., Li, Z., & Bardou, D. (2021a). Conventional machine learning versus deep learning for magnification dependent histopathological breast cancer image classification: A comparative study with visual explanation. Diagnostics, 11(3), 528. https://doi.org/10.3390/diagnostics11030528
  • Boumaraf, S., Liu, X., Zheng, Z., Ma, X., & Ferkous, C. (2021b). A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images. Biomedical Signal Processing and Control, 63, 102192. https://doi.org/10.1016/j.bspc.2020.102192
  • Brown, J. S., Amend, S. R., Austin, R. H., Gatenby, R. A., Hammarlund, E. U., & Pienta, K. J. (2023). Updating the definition of cancer. Molecular Cancer Research, 21(11), 1142-1147. https://doi.org/10.1158/1541-7786.MCR-23-0411
  • Budak, Ü., & Güzel, A. (2020). Automatic grading system for diagnosis of breast cancer exploiting co-occurrence shearlet transform and histogram features. IRBM, 41(2), 106-114. https://doi.org/10.1016/j.irbm.2020.02.001.
  • Burçak, K. C., Baykan, Ö. K., & Uğuz, H. (2021). A new deep convolutional neural network model for classifying breast cancer histopathological images and the hyperparameter optimisation of the proposed model. The Journal of Supercomputing, 77(1), 973-989. https://doi.org/10.1007/s11227-020-03321-y
  • Chattopadhyay, S., Dey, A., Singh, P. K., Oliva, D., Cuevas, E., & Sarkar, R. (2022a). MTRRE-Net: A deep learning model for detection of breast cancer from histopathological images. Computers in Biology and Medicine, 150, 106155. https://doi.org/10.1016/j.compbiomed.2022.106155
  • Chattopadhyay, S., Dey, A., Singh, P. K., & Sarkar, R. (2022b). DRDA-Net: Dense residual dual-shuffle attention network for breast cancer classification using histopathological images. Computers in Biology and Medicine, 145, 105437. https://doi.org/10.1016/j.compbiomed.2022.105437
  • Das, P. K., Meher, S., Panda, R., & Abraham, A. (2019). A review of automated methods for the detection of sickle cell disease. IEEE Reviews in Biomedical Engineering, 13, 309-324. https://doi.org/10.1109/RBME.2019.2917780
  • Deng, X., Liu, Q., Deng, Y., & Mahadevan, S. (2016). An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Information Sciences, 340, 250-261. https://doi.org/10.1016/j.ins.2016.01.033
  • Gupta, K., & Chawla, N. (2020). Analysis of histopathological images for prediction of breast cancer using traditional classifiers with pre-trained CNN. Procedia Computer Science, 167, 878-889. https://doi.org/10.1016/j.procs.2020.03.427
  • Gupta, V., Vasudev, M., Doegar, A., & Sambyal, N. (2021). Breast cancer detection from histopathology images using modified residual neural networks. Biocybernetics and Biomedical Engineering, 41(4), 1272-1287. https://doi.org/10.1016/j.bbe.2021.08.011
  • Hong, J., Cheng, H., Zhang, Y.-D., & Liu, J. (2019). Detecting cerebral microbleeds with transfer learning. Machine Vision and Applications, 30(7), 1123-1133. https://doi.org/10.1007/s00138-019-01029-5
  • Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360. https://doi.org/10.48550/arXiv.1602.07360
  • Inik, Ö., Balcioğlu, E., Ceyhan, A., & Ülker, E. (2019). Using convolution neural network for classification of different tissue images in histological sections. Annals of the Faculty of Engineering Hunedoara, 17(1), 101-104.
  • Joseph, A. A., Abdullahi, M., Junaidu, S. B., Ibrahim, H. H., & Chiroma, H. (2022). Improved multi-classification of breast cancer histopathological images using handcrafted features and deep neural network (dense layer). Intelligent Systems with Applications, 14, 200066. https://doi.org/10.1016/j.iswa.2022.200066
  • Kallipolitis, A., Revelos, K., & Maglogiannis, I. (2021). Ensembling EfficientNets for the classification and interpretation of histopathology images. Algorithms, 14(10), 278. https://doi.org/10.3390/a14100278
  • Kashyap, R. (2022). Breast cancer histopathological image classification using stochastic dilated residual ghost model. International Journal of Information Retrieval Research (IJIRR), 12(1), 1-24. http://dx.doi.org/10.4018/IJIRR.289655
  • Krishna, S., Suganthi, S., Bhavsar, A., Yesodharan, J., & Krishnamoorthy, S. (2023). An interpretable decision-support model for breast cancer diagnosis using histopathology images. Journal of Pathology Informatics, 14, 100319. https://doi.org/10.1016/j.jpi.2023.100319
  • Li, W., Long, H., Zhan, X., & Wu, Y. (2024). MDAA: multi-scale and dual-adaptive attention network for breast cancer classification. Signal, Image and Video Processing, 18, 1-11. https://doi.org/10.1007/s11760-023-02976-3
  • Motlagh, M. H., Jannesari, M., Aboulkheyr, H., Khosravi, P., Elemento, O., Totonchi, M., & Hajirasouliha, I. (2018). Breast cancer histopathological image classification: A deep learning approach. BioRxiv, 242818. https://doi.org/10.1101/242818
  • Nadr, K., & İnik, Ö. (2023, June). Development of an effective deep learning model for breast cancer classification in histopathologic images. 11th International Congress on Engineering, Architecture and Design, İstanbul, Türkiye.
  • Sadique, F. L., Subramaiam, H., Krishnappa, P., Chellappan, D. K., & Ma, J. H. (2024). Recent advances in breast cancer metastasis with special emphasis on metastasis to the brain. Pathology-Research and Practice, 260, 155378. https://doi.org/10.1016/j.prp.2024.155378
  • Sakib, S., Ahmed, N., Kabir, A. J., & Ahmed, H. (2019). An overview of convolutional neural network: Its architecture and applications. Preprints. https://doi.org/10.20944/preprints201811.0546.v4
  • Sankari, V. M. R., Umapathy, U., Alasmari, S., & Aslam, S. M. (2023). Automated detection of retinopathy of prematurity using quantum machine learning and deep learning techniques. IEEE Access, 11, 94306-94321. https://doi.org/10.1109/ACCESS.2023.3311346
  • Sharma, S., & Kumar, S. (2022). The Xception model: A potential feature extractor in breast cancer histology images classification. ICT Express, 8(1), 101-108. https://doi.org/10.1016/j.icte.2021.11.010
  • Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2015). A dataset for breast cancer histopathological image classification. Ieee Transactions on Biomedical Engineering, 63(7), 1455-1462. https://doi.org/10.1109/TBME.2015.2496264
  • Suzuki, K. (2017). Overview of deep learning in medical imaging. Radiological Physics and Technology, 10(3), 257-273. https://doi.org/10.1007/s12194-017-0406-5
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Wang, P., Wang, J., Li, Y., Li, P., Li, L., & Jiang, M. (2021). Automatic classification of breast cancer histopathological images based on deep feature fusion and enhanced routing. Biomedical Signal Processing and Control, 65, 102341. https://doi.org/10.1016/j.bspc.2020.102341
  • WHO. (2024). Breast Cancer. Word Health Organization. Access Date: 15.05.2024. https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  • Wu, H., & Gu, X. (2015). Towards dropout training for convolutional neural networks. Neural Networks, 71, 1-10. https://doi.org/10.1016/j.neunet.2015.07.007
  • Zerouaoui, H., Alaoui, O. E., & Idri, A. (2024). New design strategies of deep heterogenous convolutional neural networks ensembles for breast cancer diagnosis. Multimedia Tools and Applications, 83, 1-32. https://doi.org/10.1007/s11042-023-18002-0
  • Zerouaoui, H., & Idri, A. (2022). Deep hybrid architectures for binary classification of medical breast cancer images. Biomedical Signal Processing and Control, 71, 103226. https://doi.org/10.1016/j.bspc.2021.103226
  • Zhou, Y., Zhang, C., & Gao, S. (2022). Breast cancer classification from histopathological images using resolution adaptive network. IEEE Access, 10, 35977-35991. https://doi.org/10.1109/ACCESS.2022.3163822

Development of a Cost-Effective Novel CNN Model for Breast Cancer Classification in Histopathological Images

Year 2024, Volume: 29 Issue: 3, 896 - 912, 31.12.2024
https://doi.org/10.53433/yyufbed.1498736

Abstract

Cancer, is a leading cause of disease and death worldwide, affecting both advanced industrialized and developing nations. Breast cancer, specifically among women, is a highly prevalent and serious type of cancer, making it a focal point for extensive research in the field of medicine. In the diagnosis of breast cancer, histopathological images play a crucial role because of the abundance of valuable phenotypic information they contain. To enhance the accuracy and objectivity of breast histopathological image analysis (BHIA), classification, and detection tasks are performed on these images using deep learning architecture approaches. In a preliminary experiment conducted in this paper using the Breast Cancer Histopathological Database (BreakHis), four state-of-the-art and custom CNN architectures were proposed. The experimental results demonstrate the notable performance of the proposed custom model at 40x and 200x magnification factors, reaching accuracies of 97.49% and 97.77%, surpassing other models. The ResNet-50 model achieved higher accuracy at 100x and 400x magnifications, with accuracies of 98.56% and 96.43%, respectively. Compared to other state-of-the-art models, the proposed CNN model not only shows efficient training with a significantly shorter timeframe but also features a reduced number of layers, highlighting its superior computational efficiency. Although the parameter count is higher than that of one of the models, the model strikes a favorable balance between computational efficiency and model capacity. In light of the achieved outcomes and the existing literature, forthcoming studies endeavor can be pursued further to enhance the performance values in breast cancer classification.

References

  • Addo, D., Zhou, S., Sarpong, K., Nartey, O. T., Abdullah, M. A., Ukwuoma, C. C., & Al-antari, M. A. (2024). A hybrid lightweight breast cancer classification framework using the histopathological images. Biocybernetics and Biomedical Engineering, 44(1), 31-54. https://doi.org/10.1016/j.bbe.2023.12.003
  • Ali, M. S., Miah, M. S., Haque, J., Rahman, M. M., & Islam, M. K. (2021). An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Machine Learning with Applications, 5, 100036. https://doi.org/10.1016/j.mlwa.2021.100036
  • Alom, M. Z., Yakopcic, C., Nasrin, M. S., Taha, T. M., & Asari, V. K. (2019). Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network. Journal of Digital Imaging, 32, 605-617. https://doi.org/10.1007/s10278-019-00182-7
  • Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., Vignat, J., Gralow, J. R., Cardoso, F., & Siesling, S. (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast, 66, 15-23. https://doi.org/10.1016/j.breast.2022.08.010
  • Boumaraf, S., Liu, X., Wan, Y., Zheng, Z., Ferkous, C., Ma, X., Li, Z., & Bardou, D. (2021a). Conventional machine learning versus deep learning for magnification dependent histopathological breast cancer image classification: A comparative study with visual explanation. Diagnostics, 11(3), 528. https://doi.org/10.3390/diagnostics11030528
  • Boumaraf, S., Liu, X., Zheng, Z., Ma, X., & Ferkous, C. (2021b). A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images. Biomedical Signal Processing and Control, 63, 102192. https://doi.org/10.1016/j.bspc.2020.102192
  • Brown, J. S., Amend, S. R., Austin, R. H., Gatenby, R. A., Hammarlund, E. U., & Pienta, K. J. (2023). Updating the definition of cancer. Molecular Cancer Research, 21(11), 1142-1147. https://doi.org/10.1158/1541-7786.MCR-23-0411
  • Budak, Ü., & Güzel, A. (2020). Automatic grading system for diagnosis of breast cancer exploiting co-occurrence shearlet transform and histogram features. IRBM, 41(2), 106-114. https://doi.org/10.1016/j.irbm.2020.02.001.
  • Burçak, K. C., Baykan, Ö. K., & Uğuz, H. (2021). A new deep convolutional neural network model for classifying breast cancer histopathological images and the hyperparameter optimisation of the proposed model. The Journal of Supercomputing, 77(1), 973-989. https://doi.org/10.1007/s11227-020-03321-y
  • Chattopadhyay, S., Dey, A., Singh, P. K., Oliva, D., Cuevas, E., & Sarkar, R. (2022a). MTRRE-Net: A deep learning model for detection of breast cancer from histopathological images. Computers in Biology and Medicine, 150, 106155. https://doi.org/10.1016/j.compbiomed.2022.106155
  • Chattopadhyay, S., Dey, A., Singh, P. K., & Sarkar, R. (2022b). DRDA-Net: Dense residual dual-shuffle attention network for breast cancer classification using histopathological images. Computers in Biology and Medicine, 145, 105437. https://doi.org/10.1016/j.compbiomed.2022.105437
  • Das, P. K., Meher, S., Panda, R., & Abraham, A. (2019). A review of automated methods for the detection of sickle cell disease. IEEE Reviews in Biomedical Engineering, 13, 309-324. https://doi.org/10.1109/RBME.2019.2917780
  • Deng, X., Liu, Q., Deng, Y., & Mahadevan, S. (2016). An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Information Sciences, 340, 250-261. https://doi.org/10.1016/j.ins.2016.01.033
  • Gupta, K., & Chawla, N. (2020). Analysis of histopathological images for prediction of breast cancer using traditional classifiers with pre-trained CNN. Procedia Computer Science, 167, 878-889. https://doi.org/10.1016/j.procs.2020.03.427
  • Gupta, V., Vasudev, M., Doegar, A., & Sambyal, N. (2021). Breast cancer detection from histopathology images using modified residual neural networks. Biocybernetics and Biomedical Engineering, 41(4), 1272-1287. https://doi.org/10.1016/j.bbe.2021.08.011
  • Hong, J., Cheng, H., Zhang, Y.-D., & Liu, J. (2019). Detecting cerebral microbleeds with transfer learning. Machine Vision and Applications, 30(7), 1123-1133. https://doi.org/10.1007/s00138-019-01029-5
  • Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360. https://doi.org/10.48550/arXiv.1602.07360
  • Inik, Ö., Balcioğlu, E., Ceyhan, A., & Ülker, E. (2019). Using convolution neural network for classification of different tissue images in histological sections. Annals of the Faculty of Engineering Hunedoara, 17(1), 101-104.
  • Joseph, A. A., Abdullahi, M., Junaidu, S. B., Ibrahim, H. H., & Chiroma, H. (2022). Improved multi-classification of breast cancer histopathological images using handcrafted features and deep neural network (dense layer). Intelligent Systems with Applications, 14, 200066. https://doi.org/10.1016/j.iswa.2022.200066
  • Kallipolitis, A., Revelos, K., & Maglogiannis, I. (2021). Ensembling EfficientNets for the classification and interpretation of histopathology images. Algorithms, 14(10), 278. https://doi.org/10.3390/a14100278
  • Kashyap, R. (2022). Breast cancer histopathological image classification using stochastic dilated residual ghost model. International Journal of Information Retrieval Research (IJIRR), 12(1), 1-24. http://dx.doi.org/10.4018/IJIRR.289655
  • Krishna, S., Suganthi, S., Bhavsar, A., Yesodharan, J., & Krishnamoorthy, S. (2023). An interpretable decision-support model for breast cancer diagnosis using histopathology images. Journal of Pathology Informatics, 14, 100319. https://doi.org/10.1016/j.jpi.2023.100319
  • Li, W., Long, H., Zhan, X., & Wu, Y. (2024). MDAA: multi-scale and dual-adaptive attention network for breast cancer classification. Signal, Image and Video Processing, 18, 1-11. https://doi.org/10.1007/s11760-023-02976-3
  • Motlagh, M. H., Jannesari, M., Aboulkheyr, H., Khosravi, P., Elemento, O., Totonchi, M., & Hajirasouliha, I. (2018). Breast cancer histopathological image classification: A deep learning approach. BioRxiv, 242818. https://doi.org/10.1101/242818
  • Nadr, K., & İnik, Ö. (2023, June). Development of an effective deep learning model for breast cancer classification in histopathologic images. 11th International Congress on Engineering, Architecture and Design, İstanbul, Türkiye.
  • Sadique, F. L., Subramaiam, H., Krishnappa, P., Chellappan, D. K., & Ma, J. H. (2024). Recent advances in breast cancer metastasis with special emphasis on metastasis to the brain. Pathology-Research and Practice, 260, 155378. https://doi.org/10.1016/j.prp.2024.155378
  • Sakib, S., Ahmed, N., Kabir, A. J., & Ahmed, H. (2019). An overview of convolutional neural network: Its architecture and applications. Preprints. https://doi.org/10.20944/preprints201811.0546.v4
  • Sankari, V. M. R., Umapathy, U., Alasmari, S., & Aslam, S. M. (2023). Automated detection of retinopathy of prematurity using quantum machine learning and deep learning techniques. IEEE Access, 11, 94306-94321. https://doi.org/10.1109/ACCESS.2023.3311346
  • Sharma, S., & Kumar, S. (2022). The Xception model: A potential feature extractor in breast cancer histology images classification. ICT Express, 8(1), 101-108. https://doi.org/10.1016/j.icte.2021.11.010
  • Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2015). A dataset for breast cancer histopathological image classification. Ieee Transactions on Biomedical Engineering, 63(7), 1455-1462. https://doi.org/10.1109/TBME.2015.2496264
  • Suzuki, K. (2017). Overview of deep learning in medical imaging. Radiological Physics and Technology, 10(3), 257-273. https://doi.org/10.1007/s12194-017-0406-5
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Wang, P., Wang, J., Li, Y., Li, P., Li, L., & Jiang, M. (2021). Automatic classification of breast cancer histopathological images based on deep feature fusion and enhanced routing. Biomedical Signal Processing and Control, 65, 102341. https://doi.org/10.1016/j.bspc.2020.102341
  • WHO. (2024). Breast Cancer. Word Health Organization. Access Date: 15.05.2024. https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  • Wu, H., & Gu, X. (2015). Towards dropout training for convolutional neural networks. Neural Networks, 71, 1-10. https://doi.org/10.1016/j.neunet.2015.07.007
  • Zerouaoui, H., Alaoui, O. E., & Idri, A. (2024). New design strategies of deep heterogenous convolutional neural networks ensembles for breast cancer diagnosis. Multimedia Tools and Applications, 83, 1-32. https://doi.org/10.1007/s11042-023-18002-0
  • Zerouaoui, H., & Idri, A. (2022). Deep hybrid architectures for binary classification of medical breast cancer images. Biomedical Signal Processing and Control, 71, 103226. https://doi.org/10.1016/j.bspc.2021.103226
  • Zhou, Y., Zhang, C., & Gao, S. (2022). Breast cancer classification from histopathological images using resolution adaptive network. IEEE Access, 10, 35977-35991. https://doi.org/10.1109/ACCESS.2022.3163822
There are 38 citations in total.

Details

Primary Language English
Subjects Information Systems (Other), Computational Complexity and Computability
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

Karwan Noori Nadr Jaf 0009-0008-0152-0354

Özkan İnik 0000-0003-4728-8438

Publication Date December 31, 2024
Submission Date June 11, 2024
Acceptance Date September 6, 2024
Published in Issue Year 2024 Volume: 29 Issue: 3

Cite

APA Jaf, K. N. N., & İnik, Ö. (2024). Development of a Cost-Effective Novel CNN Model for Breast Cancer Classification in Histopathological Images. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 896-912. https://doi.org/10.53433/yyufbed.1498736